Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells (original) (raw)

References

  1. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C. 1994. Green fluorescent protein as a marker for gene expression. Science 263(5148): 802–805.
    Article CAS PubMed Google Scholar
  2. Cody, C.W., Prasher, D.C., Westler, W.M., Pendergast, F.G., and Ward, W.W. 1993 Chemical structure of the hexapeptide chromophore of the Aequorea green fluorescent protein. Biochemistry 32(5): 1212–1218.
    Article CAS PubMed Google Scholar
  3. Inouye, S. and Tsuji, F.I. 1994. Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett. 341(2–3): 277–280.
    Article CAS PubMed Google Scholar
  4. Wang, S. and Hazelrigg, T. 1994 Implications for bed mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369(6479): 400–403.
    Article CAS PubMed Google Scholar
  5. Steams, T. 1995 Green fluorescent protein. The green revolution. Curr Biol. 5(3): 262–264.
    Google Scholar
  6. Kitt, P., Adams, M., Kondepudi, A., Gallagher, D., and Kain, S. 1995 Green fluorescent protein (GFP): a novel reporter for monitoring gene expression in living cells and organisms. Clontechniques X(1): 1–2.
    Google Scholar
  7. Marshall, J., Molloy, R., Moss, G.W., Howe, J.R., and Hughes, T.E. 1995 The jellyfish green fluorescent protein: a new tool for studying ion channel expression and function. Neuron 14(2): 211–215.
    Article CAS PubMed Google Scholar
  8. Delagrave, S., Hawtin, R.E., Silva, C.M., Yang, M.M., and Youvan, D.C. 1995 Red-shifted excitation mutants of the green fluorescent protein. Bio/Technology 13(2): 151–154.
    CAS Google Scholar
  9. Heim, R., Cubitt, A.B., and Tsien, R.Y. 1995 Improved green fluorescence. Nature 373(6516): 663–664.
    Article CAS PubMed Google Scholar
  10. Nolan, G.P., Fiering, S., Nicolas, J.-F., and Herzenberg, L.A. 1988. Fluorescence-cativated cell analysis and sorting of viable mammalian cells based on β-galac-tosidase activity after transduction of E. coli lacZ . Proc. Natl. Acad. Sci. USA 85: 2603–2607.
    Article CAS PubMed PubMed Central Google Scholar
  11. Cormack, B.P., Valdivia, R.H., and Falkow, S. 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene. In press.
  12. Hawley, R.G., Lieu, F.H.L., Fong, A.Z.C., and Hawley, T.S. 1994. Versatile retroviral vectors for potential use in gene therapy. Gene Therapy 1: 136–138.
    CAS PubMed Google Scholar
  13. Ghattas, I.R., Sanes, J.R., and Majors, J.E. 1991. The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos. Mol. Cell. Biol. 11: 5848–5859.
    Article CAS PubMed PubMed Central Google Scholar
  14. Pear, W.S., Nolan, G.R., Scott, M.L., and Baltimore, D. 1993 Production of high-titer helper-free retroviruses by transient transfectiony. Proc. Natl. Acad. Sci. USA 90(18): 8392–8396.
    Article CAS PubMed PubMed Central Google Scholar
  15. Miller, A.D. and Buttimore, C. 1986. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell. Biol. 6: 2895.
    Article CAS PubMed PubMed Central Google Scholar
  16. Kotani, H., et al. 1994 Improved methods of retroviral vector transduction and production for gene therapy. Hum. Gene. Ther. 5(1): 19–28.
    Article CAS PubMed Google Scholar

Download references