Improved properties of FLP recombinase evolved by cycling mutagenesis (original) (raw)
References
Sauer, B. 1994. Site-specific recombination: developments and applications. Curr. Opin. Biotechnol.5: 521–527. ArticleCAS Google Scholar
Rossant, J. and Nagy, A. 1995. Genome engineering: the new mouse genetics. Nat. Med.1: 592–594. ArticleCAS Google Scholar
Rajewsky, K., Gu, H., Kühn, R., Betz, U.A., Muller, W., Roes, J., and Schwenk, F. 1996. Conditional gene targeting. J. Clin. Invest.98: 600–60. ArticleCAS Google Scholar
Kilby, N.J., Snaith, M.R., and Murray, J.A. 1993. Site-specific recombinases: tools for genome engineering. Trends Genet.9: 413–421. ArticleCAS Google Scholar
Smith, A.J., De Sousa, M.A., Kwabi-Addo, B., Heppell-Parton, A., Impey, H., and Babbitts, P. 1995. A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat. Genet.9: 376–38. ArticleCAS Google Scholar
Ramirez Solis, R., Liu, P., and Bradley, A. 1995. Chromosome engineering in mice. Nature378: 720–724. ArticleCAS Google Scholar
Gu, H., Marth, J.D., Orban, P.C., Mossmann, H., and Rajewsky, K. 1994. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science265: 103–106. ArticleCAS Google Scholar
Schwenk, R, Kühn, R., Angrand, P.O., Rajewsky, K., and Stewart, A.F. 1998. Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res.26: 1427–1432. ArticleCAS Google Scholar
Logie, C., and Stewart, A.F. 1995. Ligand-regulated site-specific recombination. Proc. Natl. Acad. Sci. USA92: 5940–5944. ArticleCAS Google Scholar
Golic, K.G., and Lindquist, S. 1989. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell59: 499–509. ArticleCAS Google Scholar
Gu, H., Zou, Y.R., and Rajewsky, K. 1993. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP- mediated gene targeting. Cell73: 1155–1164. ArticleCAS Google Scholar
Meyers, E.N., Lewandoski, M., and Martin, G.R. 1998. An Fgf8 mutant allelic series generated by Cre-and FLP-mediated recombination. Nat. Gen.18: 136–141. ArticleCAS Google Scholar
Buchholz, F, Ringrose, L, Angrand, P.O., Rossi, F, and Stewart, A.F. 1996. Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res.24: 4256–4262. ArticleCAS Google Scholar
Brookfield, J.F. 1995. Biotechnology: making selection work. Nature375: 449. ArticleCAS Google Scholar
Moore, J.C., and Arnold, H.A. 1996. Directed evolution of a paranitrobenzyl esterase for aqueous-organic solvents. Nature Biotechnology14: 458–467. ArticleCAS Google Scholar
Crameri, A., Whitehorn, E.A., Tate, E., and Stemmer, W.P.C. 1996. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnology14: 315–319. ArticleCAS Google Scholar
Kuchner, O., and Arnold, F.H. 1997. Directed evolution of enzyme catalysts. Trends in Biotechnology15: 523–530. ArticleCAS Google Scholar
Stemmer, W.P. 1994. Rapid evolution of a protein in vitro by DNA shuffling. Nature370: 389–391. ArticleCAS Google Scholar
Harford, M.N., and Peeters, M. 1987. Curing of endogenous 2 micron DNA in yeast by recombinant vectors. Curr. Genet.11: 315–3. ArticleCAS Google Scholar
Guzman, L.M., Belin, D., Carson, M.J., and Beckwith, J. 1995. Tight regulation modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol.177: 4121–1130. ArticleCAS Google Scholar
Lebreton, B., Prasad, P.V, Jayaram, M., and Youderian, P. 1988. Mutations that improve the binding of yeast FLP recombinase to its substrate. Genetics118: 393–400. CASPubMedPubMed Central Google Scholar
Argos, P., Landy, A., Abremski, K., Egan, J.B., Haggard-Ljungquist, E., Hoess, R.H. et al. 1986. The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J.5: 433–440. ArticleCAS Google Scholar
Nunes-Duby, S.E., Kwon, H.J., Tirumalai, R.S., Ellenberger, T, and Landy, A. 1998. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res26: 391–406. ArticleCAS Google Scholar
Kwon, H.J., Tirumalai, R., Landy, A., and Ellenberger, T. 1997. Flexibility in DNA recombination: structure of the lambda integrase catalytic core. Science276: 126–131. ArticleCAS Google Scholar
Hickman, A.B., Waninger, S., Scocca, J.J., and Dyda, F. 1997. Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 integrase at 2.7 Å resolution. Ceff89: 227–237. CAS Google Scholar
Quo, R, Gopaul, D.N., and Van Duyne, G.D. 1997. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature389: 40. Article Google Scholar
Subramanya, H.S., Arciszewska, L.K., Baker, R.A., Bird, L.E., Sherratt, D.J., and Wigley, D.B. 1997. Crystal structure of the site-specific recombinase XerD. EMBOJ.16: 5178–5187. ArticleCAS Google Scholar
Utatsu, I., Sakamoto, S., Imura, T., and Tohe, A. 1987. Yeast plasmids resembling 2 micron DNA: regional similarities and diversities at the molecular level. J. Bacteriol.169: 5537–5545. ArticleCAS Google Scholar
Evans, B.R., Chen, J.W., Parsons, R.L., Bauer, T.K., Teplow, D.B., and Jayaram, M. 1990. Identification of the active site tyrosine of Flp recombinase. Possible relevance of its location to the mechanism of recombination. J. Biol. Chem.265: 18504–18510. [published erratum appears in J. Biol. Chem.266: 7312, 1991.] CASPubMed Google Scholar
Tobias, J.W., Shrader, T.E., Rocap, G., and Varshavsky, A. 1991. The N-end rule in bacteria. Science254: 1374–1377. ArticleCAS Google Scholar
Pan, H., Clary, D., and Sadowski, P.O. 1991. Identification of the DNA-binding domain of the FLP recombinase. J. Biol. Chem.266: 11347–11354. CASPubMed Google Scholar
Vieille, C., and Zeikus, J.G. 1996. Thermozymes: identifying molecular determinants of protein structure and functional stability. Trends in Biotechnology14: 183–190. ArticleCAS Google Scholar
Watanabe, K., Chishiro, K., Kitamura, K., and Suzuki, Y. 1991. Praline residues responsible for thermostability occur with high frequency in the loop regions of an extremely thermostable oligo-1,6-glucosidase from Bacillus thermoglucosi-dasius KP1006. J. Biol. Chem.266: 24287–24294. CASPubMed Google Scholar
Burdette, D.S., Vieille, C., and Zeikus, J.G. 1996. Cloning and expression of the gene encoding the Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase and biochemical characterization of the enzyme. Biochem. J.316: 115–122. ArticleCAS Google Scholar
Meyer-Leon, L., Gates, C.A., Attwood, J.M., Wood, E.A., and Cox, M.M. 1987. Purification of the FLP site-specific recombinase by affinity chromatography and re-examination of basic properties of the system. Nucleic Acids Res.15: 6469–6488. ArticleCAS Google Scholar
O'Gorman, S., and Wahl, G.M. 1997. Mouse engineering. Science277: 1116–1117. Article Google Scholar
Heidmann, S., Seifert, W., Kessler, C., and Domdey, H. 1989. Cloning characterization and heterologous expression of the Smal restriction-modification system. Nucleic Acids Res.17: 9783–9796. ArticleCAS Google Scholar
Buchholz, R, Angrand, P. -O., and Stewart, A.F. 1996. A simple assay to determine the functionality of Cre or FLP recombination targets in genomic manipulation constructs. Nucleic Acids Res.24: 3118–3119. ArticleCAS Google Scholar
Fromant, M., Blanquet, S., and Plateau, P. 1995. Direct random mutagenesis of gene-sized DNA fragments using polymerase chain reaction. Anal. Biochem.224: 347–353. ArticleCAS Google Scholar
Vartanian, J.P., Henry, M., and Wain Hobson, S. 1996. Hypermutagenic PCR involving all four transitions and a sizeable proportion of transversions. Nucleic Acids Res.24: 2627–2631. ArticleCAS Google Scholar
Lorimer, I.A., and Pastan, I. 1995. Random recombination of antibody single chain Fv sequences after fragmentation with DNasel in the presence of Mn2+. Nucleic Acids Res.23: 3067–3068. ArticleCAS Google Scholar
Wierzbicki, A., Kendall, M., Abremski, K., and Hoess, R. 1987. A mutational analysis of the bacteriophage P1 recombinase Cre. J. Mol. Biol.195: 785–794. ArticleCAS Google Scholar
Nagy, A., Rossant, J., Nagy, R., Abramow Newerly, W., and Roder, J.C. 1993. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA90: 8424–8428. ArticleCAS Google Scholar
Kellendonk, C., Tranche, R, Monaghan, A.P., Angrand, P.O., Stweart, A.R, and Schütz, G. 1996. Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res.24: 1404–1411. ArticleCAS Google Scholar
Rost, B., Sander, C., and Schneider, R. 1994. PHD—an automatic mail server for protein secondary structure prediction. Comput. Appl. Biosci.10: 53–60. CAS Google Scholar