Improved properties of FLP recombinase evolved by cycling mutagenesis (original) (raw)

References

  1. Sauer, B. 1994. Site-specific recombination: developments and applications. Curr. Opin. Biotechnol. 5: 521–527.
    Article CAS Google Scholar
  2. Rossant, J. and Nagy, A. 1995. Genome engineering: the new mouse genetics. Nat. Med. 1: 592–594.
    Article CAS Google Scholar
  3. Rajewsky, K., Gu, H., Kühn, R., Betz, U.A., Muller, W., Roes, J., and Schwenk, F. 1996. Conditional gene targeting. J. Clin. Invest. 98: 600–60.
    Article CAS Google Scholar
  4. Kilby, N.J., Snaith, M.R., and Murray, J.A. 1993. Site-specific recombinases: tools for genome engineering. Trends Genet. 9: 413–421.
    Article CAS Google Scholar
  5. Smith, A.J., De Sousa, M.A., Kwabi-Addo, B., Heppell-Parton, A., Impey, H., and Babbitts, P. 1995. A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat. Genet. 9: 376–38.
    Article CAS Google Scholar
  6. Ramirez Solis, R., Liu, P., and Bradley, A. 1995. Chromosome engineering in mice. Nature 378: 720–724.
    Article CAS Google Scholar
  7. Gu, H., Marth, J.D., Orban, P.C., Mossmann, H., and Rajewsky, K. 1994. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265: 103–106.
    Article CAS Google Scholar
  8. Schwenk, R, Kühn, R., Angrand, P.O., Rajewsky, K., and Stewart, A.F. 1998. Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res. 26: 1427–1432.
    Article CAS Google Scholar
  9. Logie, C., and Stewart, A.F. 1995. Ligand-regulated site-specific recombination. Proc. Natl. Acad. Sci. USA 92: 5940–5944.
    Article CAS Google Scholar
  10. Golic, K.G., and Lindquist, S. 1989. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59: 499–509.
    Article CAS Google Scholar
  11. Gu, H., Zou, Y.R., and Rajewsky, K. 1993. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP- mediated gene targeting. Cell 73: 1155–1164.
    Article CAS Google Scholar
  12. Meyers, E.N., Lewandoski, M., and Martin, G.R. 1998. An Fgf8 mutant allelic series generated by Cre-and FLP-mediated recombination. Nat. Gen. 18: 136–141.
    Article CAS Google Scholar
  13. Buchholz, F, Ringrose, L, Angrand, P.O., Rossi, F, and Stewart, A.F. 1996. Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res. 24: 4256–4262.
    Article CAS Google Scholar
  14. Brookfield, J.F. 1995. Biotechnology: making selection work. Nature 375: 449.
    Article CAS Google Scholar
  15. Moore, J.C., and Arnold, H.A. 1996. Directed evolution of a paranitrobenzyl esterase for aqueous-organic solvents. Nature Biotechnology 14: 458–467.
    Article CAS Google Scholar
  16. Crameri, A., Whitehorn, E.A., Tate, E., and Stemmer, W.P.C. 1996. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnology 14: 315–319.
    Article CAS Google Scholar
  17. Kuchner, O., and Arnold, F.H. 1997. Directed evolution of enzyme catalysts. Trends in Biotechnology 15: 523–530.
    Article CAS Google Scholar
  18. Stemmer, W.P. 1994. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389–391.
    Article CAS Google Scholar
  19. Harford, M.N., and Peeters, M. 1987. Curing of endogenous 2 micron DNA in yeast by recombinant vectors. Curr. Genet. 11: 315–3.
    Article CAS Google Scholar
  20. Guzman, L.M., Belin, D., Carson, M.J., and Beckwith, J. 1995. Tight regulation modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177: 4121–1130.
    Article CAS Google Scholar
  21. Lebreton, B., Prasad, P.V, Jayaram, M., and Youderian, P. 1988. Mutations that improve the binding of yeast FLP recombinase to its substrate. Genetics 118: 393–400.
    CAS PubMed PubMed Central Google Scholar
  22. Argos, P., Landy, A., Abremski, K., Egan, J.B., Haggard-Ljungquist, E., Hoess, R.H. et al. 1986. The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J. 5: 433–440.
    Article CAS Google Scholar
  23. Nunes-Duby, S.E., Kwon, H.J., Tirumalai, R.S., Ellenberger, T, and Landy, A. 1998. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 26: 391–406.
    Article CAS Google Scholar
  24. Kwon, H.J., Tirumalai, R., Landy, A., and Ellenberger, T. 1997. Flexibility in DNA recombination: structure of the lambda integrase catalytic core. Science 276: 126–131.
    Article CAS Google Scholar
  25. Hickman, A.B., Waninger, S., Scocca, J.J., and Dyda, F. 1997. Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 integrase at 2.7 Å resolution. Ceff 89: 227–237.
    CAS Google Scholar
  26. Quo, R, Gopaul, D.N., and Van Duyne, G.D. 1997. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389: 40.
    Article Google Scholar
  27. Subramanya, H.S., Arciszewska, L.K., Baker, R.A., Bird, L.E., Sherratt, D.J., and Wigley, D.B. 1997. Crystal structure of the site-specific recombinase XerD. EMBOJ. 16: 5178–5187.
    Article CAS Google Scholar
  28. Utatsu, I., Sakamoto, S., Imura, T., and Tohe, A. 1987. Yeast plasmids resembling 2 micron DNA: regional similarities and diversities at the molecular level. J. Bacteriol. 169: 5537–5545.
    Article CAS Google Scholar
  29. Evans, B.R., Chen, J.W., Parsons, R.L., Bauer, T.K., Teplow, D.B., and Jayaram, M. 1990. Identification of the active site tyrosine of Flp recombinase. Possible relevance of its location to the mechanism of recombination. J. Biol. Chem. 265: 18504–18510. [published erratum appears in J. Biol. Chem. 266: 7312, 1991.]
    CAS PubMed Google Scholar
  30. Tobias, J.W., Shrader, T.E., Rocap, G., and Varshavsky, A. 1991. The N-end rule in bacteria. Science 254: 1374–1377.
    Article CAS Google Scholar
  31. Pan, H., Clary, D., and Sadowski, P.O. 1991. Identification of the DNA-binding domain of the FLP recombinase. J. Biol. Chem. 266: 11347–11354.
    CAS PubMed Google Scholar
  32. Vieille, C., and Zeikus, J.G. 1996. Thermozymes: identifying molecular determinants of protein structure and functional stability. Trends in Biotechnology 14: 183–190.
    Article CAS Google Scholar
  33. Watanabe, K., Chishiro, K., Kitamura, K., and Suzuki, Y. 1991. Praline residues responsible for thermostability occur with high frequency in the loop regions of an extremely thermostable oligo-1,6-glucosidase from Bacillus thermoglucosi-dasius KP1006. J. Biol. Chem. 266: 24287–24294.
    CAS PubMed Google Scholar
  34. Burdette, D.S., Vieille, C., and Zeikus, J.G. 1996. Cloning and expression of the gene encoding the Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase and biochemical characterization of the enzyme. Biochem. J. 316: 115–122.
    Article CAS Google Scholar
  35. Meyer-Leon, L., Gates, C.A., Attwood, J.M., Wood, E.A., and Cox, M.M. 1987. Purification of the FLP site-specific recombinase by affinity chromatography and re-examination of basic properties of the system. Nucleic Acids Res. 15: 6469–6488.
    Article CAS Google Scholar
  36. Marshall, E. 1997. The mouse that prompted a roar. Science 277: 24–25.
    Article CAS Google Scholar
  37. O'Gorman, S., and Wahl, G.M. 1997. Mouse engineering. Science 277: 1116–1117.
    Article Google Scholar
  38. Heidmann, S., Seifert, W., Kessler, C., and Domdey, H. 1989. Cloning characterization and heterologous expression of the Smal restriction-modification system. Nucleic Acids Res. 17: 9783–9796.
    Article CAS Google Scholar
  39. Buchholz, R, Angrand, P. -O., and Stewart, A.F. 1996. A simple assay to determine the functionality of Cre or FLP recombination targets in genomic manipulation constructs. Nucleic Acids Res. 24: 3118–3119.
    Article CAS Google Scholar
  40. Fromant, M., Blanquet, S., and Plateau, P. 1995. Direct random mutagenesis of gene-sized DNA fragments using polymerase chain reaction. Anal. Biochem. 224: 347–353.
    Article CAS Google Scholar
  41. Vartanian, J.P., Henry, M., and Wain Hobson, S. 1996. Hypermutagenic PCR involving all four transitions and a sizeable proportion of transversions. Nucleic Acids Res. 24: 2627–2631.
    Article CAS Google Scholar
  42. Lorimer, I.A., and Pastan, I. 1995. Random recombination of antibody single chain Fv sequences after fragmentation with DNasel in the presence of Mn2+. Nucleic Acids Res. 23: 3067–3068.
    Article CAS Google Scholar
  43. Wierzbicki, A., Kendall, M., Abremski, K., and Hoess, R. 1987. A mutational analysis of the bacteriophage P1 recombinase Cre. J. Mol. Biol. 195: 785–794.
    Article CAS Google Scholar
  44. Nagy, A., Rossant, J., Nagy, R., Abramow Newerly, W., and Roder, J.C. 1993. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90: 8424–8428.
    Article CAS Google Scholar
  45. Kellendonk, C., Tranche, R, Monaghan, A.P., Angrand, P.O., Stweart, A.R, and Schütz, G. 1996. Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. 24: 1404–1411.
    Article CAS Google Scholar
  46. Rost, B., Sander, C., and Schneider, R. 1994. PHD—an automatic mail server for protein secondary structure prediction. Comput. Appl. Biosci. 10: 53–60.
    CAS Google Scholar

Download references