Rapid and ultra-sensitive determination of enzyme activities using surface-enhanced resonance Raman scattering (original) (raw)

References

  1. Reetz, M.T., Zonta, A., Schimossek, K., Liebeton, K. & Jaeger, K.E. Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution. Angew. Chem. Int. Ed. Engl. 36, 2830–2832 (1997).
    Article CAS Google Scholar
  2. Baumann, M., Sturmer, R. & Bornscheuer, U.T. A high-throughput-screening method for the identification of active and enantioselective hydrolases. Angew. Chem. Int. Ed. Engl. 40, 4201–4204 (2001).
    Article CAS Google Scholar
  3. Reetz, M.T., Becker, M.H., Kuhling, K.M. & Holzwarth, A. Time-resolved IR-thermographic defection and screening of enantioselectivity in catalytic reactions. Angew. Chem. Int. Ed. Engl. 37, 2647–2650 (1998).
    Article CAS Google Scholar
  4. Reetz, M.T. et al. A GC-based method for high-throughput screening of enantio selective catalysts. Catal. Today 67, 389–396 (2001).
    Article CAS Google Scholar
  5. Guo, J.H., Wu, J.Y., Siuzdak, G. & Finn, M.G. Measurement of enantiomeric excess by kinetic resolution and mass spectrometry. Angew. Chem. Int. Ed. Engl. 38, 1755–1758 (1999).
    Article CAS Google Scholar
  6. Reetz, M.T., Becker, M.H., Klein, H.W. & Stockigt, D. A method for high-throughput screening of enantioselective catalysts. Angew. Chem. Int. Ed. Engl. 38, 1758–1761 (1999).
    Article CAS Google Scholar
  7. Reetz, M.T., Kuhling, K.M., Deege, A., Hinrichs, H. & Belder, D. Super-high-throughput screening of enantioselective catalysts by using capillary array electrophoresis. Angew. Chem. Int. Ed. Engl. 39, 3891–3893 (2000).
    Article CAS Google Scholar
  8. Janes, L.E., Kazlauskas, R.J. & Quick, E. A fast spectrophotometric method to measure the enantioselectivity of hydrolases. J. Org. Chem. 62, 4560–4561 (1997).
    Article CAS Google Scholar
  9. Janes, L.E., Lowendahl, A.C. & Kazlauskas, R.J. Quantitative screening of hydrolase libraries using pH indicators: identifying active and enantioselective hydrolases. Chem. Eur. J. 4, 2324–2331 (1998).
    Article CAS Google Scholar
  10. Moris-Varas, F. et al. Visualization of enzyme-catalyzed reactions using pH indicators: Rapid screening of hydrolase libraries and estimation of the enantioselectivity. Bioorg. Med. Chem. 7, 2183–2188 (1999).
    Article CAS Google Scholar
  11. Klein, G. & Reymond, J.L. Enantioselective fluorogenic assay of acetate hydrolysis for detecting lipase catalytic antibodies. Helv. Chim. Acta 82, 400–407 (1999).
    Article CAS Google Scholar
  12. Olsen, M.J. et al. Function-based isolation of novel enzymes from a large library. Nat. Biotechnol. 18, 1071–1074 (2000).
    Article CAS Google Scholar
  13. Stacy, A.M. & Vanduyne, R.P. Surface enhanced Raman and resonance Raman-spectroscopy in a non-aqueous electrochemical environment - Tris(2,2′- bipyridine) ruthenium(Ii) adsorbed on silver from acetonitrile. Chem. Phys. Lett. 102, 365–370 (1983).
    Article CAS Google Scholar
  14. Hildebrandt, P. & Stockburger, M. Surface-enhanced resonance Raman-spectroscopy of rhodamine-6g adsorbed on colloidal silver. J. Phys. Chem. 88, 5935–5944 (1984).
    Article CAS Google Scholar
  15. Munro, C.H., Smith, W.E., Garner, M., Clarkson, J. & White, P.C. Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman-scattering. Langmuir 11, 3712–3720 (1995).
    Article CAS Google Scholar
  16. Rodger, C., Smith, W.E., Dent, G. & Edmondson, M. Surface-enhanced resonance-Raman scattering: in informative probe of surfaces. J. Chem. Soc., Dalton Trans. 5, 791–799 (1996).
    Article Google Scholar
  17. Graham, D. et al. Selective detection of deoxyribonucleic acid at ultralow concentrations by SERRS. Anal. Chem. 69, 4703–4707 (1997).
    Article CAS Google Scholar
  18. Graham, D., Mallinder, B.J. & Smith, W.E. Surface-enhanced resonance Raman scattering as a novel method of DNA discrimination. Angew. Chem. Int. Ed. Engl. 39, 1061–1064 (2000).
    Article CAS Google Scholar
  19. Graham, D., Mallinder, B.J., Whitcombe, D. & Smith, W.E. Surface enhanced resonance Raman scattering (SERRS)—a first example of its use in multiplex genotyping. Chemphyschem 2, 746–748 (2001).
    Article CAS Google Scholar
  20. Graham, D., Mallinder, B.J., Whitcombe, D., Watson, N.D. & Smith, W.E. Simple multiplex genotyping by surface-enhanced resonance Raman scattering. Anal. Chem. 74, 1069–1074 (2002).
    Article CAS Google Scholar
  21. Graham, D. et al. Synthesis of novel monoazo benzotriazole dyes specifically for surface enhanced resonance Raman scattering. Chem. Commun. 11, 1187–1188 (1998).
    Article Google Scholar
  22. McAnally, G. et al. SERRS dyes.—Part I. Synthesis of benzotriazole monoazo dyes as model analytes for surface enhanced resonance Raman scattering. Analyst 127, 838–841 (2002).
    Article CAS Google Scholar
  23. Katritzky, A.R. & Drewniak, M. The chemistry of benzotriazole.8. a novel 2-step procedure for the _N_-alkylation of amides. J. Chem. Soc. Perkin Trans. 1, 2339–2344 (1988).
    Article Google Scholar
  24. Nie, S.M. & Emery, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).
    Article CAS Google Scholar
  25. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).
    Article CAS Google Scholar
  26. Varadharaj, G., Hazell, K. & Reeve, C.D. An efficient preparative scale resolution of 3-phenylbutyric acid by lipase from Burkholderia cepacia (Chirazyme L1). Tetrahedron Asymmetry 9, 1191–1195 (1998).
    Article CAS Google Scholar
  27. Bai, C.L., Wang, C., Xie, X.S. & Wolynes, P.G. Single molecule physics and chemistry. Proc. Natl. Acad. Sci. USA 96, 11075–11076 (1999).
    Article CAS Google Scholar
  28. Lee, P.C. & Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86, 3391–3395 (1982).
    Article CAS Google Scholar
  29. Yguerabide, J. & Yguerabide, E.E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications—II. Experimental characterization. Anal. Biochem. 262, 157–176 (1998).
    Article CAS Google Scholar

Download references