High-resolution computational models of genome binding events (original) (raw)
Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science290, 2306–2309 (2000). ArticleCAS Google Scholar
Lieb, J., Liu, X., Botstein, D. & Brown, P. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat. Genet.28, 327–324 (2001). ArticleCAS Google Scholar
Iyer, V. et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature409, 533–538 (2001). ArticleCAS Google Scholar
Simon, I. et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell106, 697–708 (2001). ArticleCAS Google Scholar
Lee, T. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science298, 799–804 (2002). ArticleCAS Google Scholar
Horak, C. et al. GATA-1 binding sites mapped in the betaglobin locus by using mammalian ChIP-chip analysis. Proc. Natl. Acad. Sci. USA99, 2924–2929 (2002). ArticleCAS Google Scholar
Weinmann, A., Yan, P., Oberley, M., Huang, T. & Farnham, P. Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev.16, 235–244 (2002). ArticleCAS Google Scholar
Li, Z. et al. A global transcriptional regulatory role for c-Myc in Burkitts lymphoma cells. Proc. Natl. Acad. Sci. USA100, 8164–8169 (2003). ArticleCAS Google Scholar
Wells, J., Yan, P., Cechvala, M., Huang, T. & Farnham, P. Identification of novel pRb binding sites using CpG microarrays suggests that E2F recruits pRb to specific genomic sites during S phase. Oncogene22, 1445–1460 (2003). ArticleCAS Google Scholar
Harbison, C.T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature431, 99–104 (2004). ArticleCAS Google Scholar
Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell116, 499–509 (2004). ArticleCAS Google Scholar
Robert, F. et al. Global position and recruitment of HATs and HDACs in the yeast genome. Molecular Cell16, 119–209 (2004). Article Google Scholar
Pokholok, D.K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell122, 517–527 (2005). ArticleCAS Google Scholar
Wyrick, J. et al. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science294, 2357–2360 (2001). ArticleCAS Google Scholar
Gerton, J. et al. Inaugural article: global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA97, 11383–11390 (2000). ArticleCAS Google Scholar
Bernstein, B.E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl. Acad. Sci. USA99, 8695–8700 (2002). ArticleCAS Google Scholar
Ng, H., Robert, F., Young, R. & Struhl, K. Regulated recruitment of the ATP-dependent chromatin remodeling complex RSC in response to transcriptional repression and activation. Genes Dev.16, 806–819 (2002). ArticleCAS Google Scholar
Robyr, D. et al. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell109, 437–446 (2002). ArticleCAS Google Scholar
Nagy, P., Cleary, M., Brown, P. & Lieb, J. Genomewide demarcation of RNA polymerase II transcription units revealed by physical fractionation of chromatin. Proc. Natl. Acad. Sci. USA100, 6364–6369 (2003). ArticleCAS Google Scholar
Kurdistani, S.K., Tavazoie, S. & Grunstein, M. Mapping global histone acetylation patterns to gene expression. Cell117, 721–733 (2004). ArticleCAS Google Scholar
Bernstein, B.E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell120, 169–181 (2005). ArticleCAS Google Scholar
Yuan, G. et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science309, 626–630 (2005). ArticleCAS Google Scholar
Marion, R.M. et al. Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proc. Natl. Acad. Sci. USA101, 14315–14322 (2004). ArticleCAS Google Scholar
Li, X. & Wong, W. Sampling motifs on phylogenetic trees. Proc. Natl. Acad. Sci. USA102, 9481–9486 (2005). ArticleCAS Google Scholar
Hartemink, A.J., Gifford, D.K., Jaakkola, T.S. & Young, R.A. Combining location and expression data for principled discovery of genetic regulatory network models. Proceedings of Pacific Symposium on Biocomputing, (Lihue, Hawaii, January 3–7, 2002) 7, 437–449 (2002).
Bar-Joseph, Z. et al. Computational discovery of gene modules and regulatory networks. Nat. Biotechnol.21, 1337–1342 (2003). ArticleCAS Google Scholar
Luscombe, N. et al. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature431, 308–312 (2004). ArticleCAS Google Scholar
Buck, M.J., Nobel, A.B. & Lieb, J.D. Chipotle: a user-friendly tool for the analysis of chip-chip data. Genome Biol.6, R97 (2005). Article Google Scholar
Roberts, C. et al. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science287, 873–880 (2000). ArticleCAS Google Scholar
Keles, S., Dudoit, S., van der Laan, M. & Cawley, S.E. Multiple testing methods for ChIP-Chip high density oligonucleotide array data. Berkeley Electronic Press (June, 2004). http://www.bepress.com/ucbbiostat/paper147 Google Scholar
Kim, T.H. et al. A high-resolution map of active promoters in the human genome. Nature436, 876–880 (2005). ArticleCAS Google Scholar
Boyer, L.A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell122, 947–956 (2005). ArticleCAS Google Scholar
Bailey, T. & Elkan, C. The value of prior knowledge in discovering motifs with MEME. in Proceedings of the Third International Conference on Intelligent Systems for Molecular Biology, 21–29 (AAAI Press, Menlo Park, CA, 1995). Google Scholar
Wingender, E. et al. The TRANSFAC system on gene expression regulation. Nucleic Acids Res.29, 281–283 (2001). ArticleCAS Google Scholar
Lutfiyya, L. & Johnston, M. Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression. Mol. Cell. Biol.16, 4790–4797 (1996). ArticleCAS Google Scholar
Neal, R.M. Probabilistic inference using Markov Chain Monte Carlo methods. Tech. Rep. CRG-TR-93–1, Dept. of Computer Science, University of Toronto (1993).
Brooks, S.P. Markov Chain Monte Carlo method and its application. Statistician47, 69–100 (1998). Google Scholar
Gordon, D. B., Nekludova, L., McCallum, S. & Fraenkel, E. Tamo: a flexible, object-oriented framework for analyzing transcriptional regulation using DNA-sequence motifs. Bioinformatics21, 3164–3165 (2005). ArticleCAS Google Scholar