Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases (original) (raw)

References

  1. Vasquez, K.M., Marburger, K., Intody, Z. & Wilson, J.H. Manipulating the mammalian genome by homologous recombination. Proc. Natl. Acad. Sci. USA 98, 8403–8410 (2001).
    Article CAS Google Scholar
  2. Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).
    Article CAS Google Scholar
  3. Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096–8106 (1994).
    Article CAS Google Scholar
  4. Choulika, A., Perrin, A., Dujon, B. & Nicolas, J.F. Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 1968–1973 (1995).
    Article CAS Google Scholar
  5. Epinat, J.C. et al. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res. 31, 2952–2962 (2003).
    Article CAS Google Scholar
  6. Porteus, M.H. Mammalian gene targeting with designed zinc finger nucleases. Mol. Ther. 13, 438–446 (2006).
    Article CAS Google Scholar
  7. Porteus, M.H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).
    Article Google Scholar
  8. Alwin, S. et al. Custom zinc-finger nucleases for use in human cells. Mol. Ther. 12, 610–617 (2005).
    Article CAS Google Scholar
  9. Kim, Y.G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 93, 1156–1160 (1996).
    Article CAS Google Scholar
  10. Liu, Q., Xia, Z., Zhong, X. & Case, C.C. Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J. Biol. Chem. 277, 3850–3856 (2002).
    Article CAS Google Scholar
  11. Segal, D.J., Dreier, B., Beerli, R.R. & Barbas, C.F., III . Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc. Natl. Acad. Sci. USA 96, 2758–2763 (1999).
    Article CAS Google Scholar
  12. Dreier, B., Beerli, R.R., Segal, D.J., Flippin, J.D. & Barbas, C.F., III . Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. 276, 29466–29478 (2001).
    Article CAS Google Scholar
  13. Dreier, B. et al. Development of zinc finger domains for recognition of the 5′-CNN-3′ family DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. 280, 35588–35597 (2005).
    Article CAS Google Scholar
  14. Blancafort, P., Magnenat, L. & Barbas, C.F., III . Scanning the human genome with combinatorial transcription factor libraries. Nat. Biotechnol. 21, 269–274 (2003).
    Article CAS Google Scholar
  15. Hurt, J.A., Thibodeau, S.A., Hirsh, A.S., Pabo, C.O. & Joung, J.K. Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc. Natl. Acad. Sci. USA 100, 12271–12276 (2003).
    Article CAS Google Scholar
  16. Smith, J. et al. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 28, 3361–3369 (2000).
    Article CAS Google Scholar
  17. Bitinaite, J., Wah, D.A., Aggarwal, A.K. & Schildkraut, I. FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA 95, 10570–10575 (1998).
    Article CAS Google Scholar
  18. Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol. 21, 289–297 (2001).
    Article CAS Google Scholar
  19. Silva, G.H., Belfort, M., Wende, W. & Pingoud, A. From monomeric to homodimeric endonucleases and back: engineering novel specificity of LAGLIDADG enzymes. J. Mol. Biol. 361, 744–754 (2006).
    Article CAS Google Scholar
  20. Sims, P.A., Menefee, A.L., Larsen, T.M., Mansoorabadi, S.O. & Reed, G.H. Structure and catalytic properties of an engineered heterodimer of enolase composed of one active and one inactive subunit. J. Mol. Biol. 355, 422–431 (2006).
    Article CAS Google Scholar
  21. Bolon, D.N., Grant, R.A., Baker, T.A. & Sauer, R.T. Specificity versus stability in computational protein design. Proc. Natl. Acad. Sci. USA 102, 12724–12729 (2005).
    Article CAS Google Scholar
  22. Wah, D.A., Hirsch, J.A., Dorner, L.F., Schildkraut, I. & Aggarwal, A.K. Structure of the multimodular endonuclease FokI bound to DNA. Nature 388, 97–100 (1997).
    Article CAS Google Scholar
  23. Wah, D.A., Bitinaite, J., Schildkraut, I. & Aggarwal, A.K. Structure of FokI has implications for DNA cleavage. Proc. Natl. Acad. Sci. USA 95, 10564–10569 (1998).
    Article CAS Google Scholar
  24. Schymkowitz, J.W. et al. Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Proc. Natl. Acad. Sci. USA 102, 10147–10152 (2005).
    Article CAS Google Scholar
  25. van der Sloot, A.M. et al. Designed tumor necrosis factor-related apoptosis-inducing ligand variants initiating apoptosis exclusively via the DR5 receptor. Proc. Natl. Acad. Sci. USA 103, 8634–8639 (2006).
    Article CAS Google Scholar
  26. Kölsch, V., Seher, T., Fernandez-Ballester, G.J., Serrano, L. & Leptin, M. Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science 315, 384–386 (2007).
    Article Google Scholar
  27. Li, X. et al. Deletions of the Aequorea victoria green fluorescent protein define the minimal domain required for fluorescence. J. Biol. Chem. 272, 28545–28549 (1997).
    Article CAS Google Scholar
  28. Miller, D.G., Petek, L.M. & Russell, D.W. Human gene targeting by adeno-associated virus vectors is enhanced by DNA double-strand breaks. Mol. Cell. Biol. 23, 3550–3557 (2003).
    Article CAS Google Scholar
  29. Sargent, R.G., Brenneman, M.A. & Wilson, J.H. Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol. Cell. Biol. 17, 267–277 (1997).
    Article CAS Google Scholar
  30. Porteus, M.H., Cathomen, T., Weitzman, M.D. & Baltimore, D. Efficient gene targeting mediated by adeno-associated virus and DNA double-strand breaks. Mol. Cell. Biol. 23, 3558–3565 (2003).
    Article CAS Google Scholar
  31. Smih, F., Rouet, P., Romanienko, P.J. & Jasin, M. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res. 23, 5012–5019 (1995).
    Article CAS Google Scholar
  32. Rogakou, E.P., Boon, C., Redon, C. & Bonner, W.M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999).
    Article CAS Google Scholar
  33. Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S. & Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).
    Article CAS Google Scholar
  34. Banath, J.P. & Olive, P.L. Expression of phosphorylated histone H2AX as a surrogate of cell killing by drugs that create DNA double-strand breaks. Cancer Res. 63, 4347–4350 (2003).
    CAS PubMed Google Scholar
  35. Catto, L.E., Ganguly, S., Milsom, S.E., Welsh, A.J. & Halford, S.E. Protein assembly and DNA looping by the FokI restriction endonuclease. Nucleic Acids Res. 34, 1711–1720 (2006).
    Article CAS Google Scholar
  36. Beumer, K., Bhattacharyya, G., Bibikova, M., Trautman, J.K. & Carroll, D. Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 172, 2391–2403 (2006).
    Article CAS Google Scholar
  37. Guerois, R., Nielsen, J.E. & Serrano, L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 320, 369–387 (2002).
    Article CAS Google Scholar
  38. Fernandez-Ballester, G. & Serrano, L. Prediction of protein-protein interaction based on structure. Methods Mol. Biol. 340, 207–234 (2006).
    CAS PubMed Google Scholar
  39. Kiel, C. & Serrano, L. The ubiquitin domain superfold: structure-based sequence alignments and characterization of binding epitopes. J. Mol. Biol. 355, 821–844 (2006).
    Article CAS Google Scholar
  40. Vijayakumar, M. et al. Electrostatic enhancement of diffusion-controlled protein-protein association: comparison of theory and experiment on barnase and barstar. J. Mol. Biol. 278, 1015–1024 (1998).
    Article CAS Google Scholar
  41. Cathomen, T. & Weitzman, M.D. A functional complex of adenovirus proteins E1B–55kDa and E4orf6 is necessary to modulate the expression level of p53 but not its transcriptional activity. J. Virol. 74, 11407–11412 (2000).
    Article CAS Google Scholar
  42. Han, J., Hendzel, M.J. & Allalunis-Turner, J. Quantitative analysis reveals asynchronous and more than double-strand break-associated histone H2AX phosphorylation after exposure to ionizing radiation. Radiat. Res. 165, 283–292 (2006).
    Article CAS Google Scholar

Download references