Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes (original) (raw)

References

  1. Debant, A., Ponzio, G., Clauser, E., Contreres, J.O. & Rossi, B. Receptor cross-linking restores an insulin metabolic effect altered by mutation on tyrosine 1162 and tyrosine 1163. Biochemistry 28, 14–17 (1989).
    Article CAS Google Scholar
  2. Weiss, A. & Littman, D.R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).
    Article CAS Google Scholar
  3. Anderson, R.G., Brown, M.S., Beisiegel, U. & Goldstein, J.L. Surface distribution and recycling of the low density lipoprotein receptor as visualized with antireceptor antibodies. J. Cell Biol. 93, 523–531 (1982).
    Article CAS Google Scholar
  4. Barak, L.S. & Webb, W.W. Fluorescent low density lipoprotein for observation of dynamics of individual receptor complexes on cultured human fibroblasts. J. Cell Biol. 90, 595–604 (1981).
    Article CAS Google Scholar
  5. Green, D.E., Morris, T.W., Green, J., Cronan, J.E., Jr. & Guest, J.R. Purification and properties of the lipoate protein ligase of Escherichia coli. Biochem. J. 309, 853–862 (1995).
    Article CAS Google Scholar
  6. Agard, N.J., Baskin, J.M., Prescher, J.A., Lo, A. & Bertozzi, C.R. A comparative study of bioorthogonal reactions with azides. ACS Chem. Biol. 1, 644–648 (2006).
    Article CAS Google Scholar
  7. Howarth, M., Takao, K., Hayashi, Y. & Ting, A.Y. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc. Natl. Acad. Sci. USA 102, 7583–7588 (2005).
    Article CAS Google Scholar
  8. Howarth, M. et al. A monovalent streptavidin with a single femtomolar biotin binding site. Nat. Methods 3, 267–273 (2006).
    Article CAS Google Scholar
  9. Marks, K.M. & Nolan, G.P. Chemical labeling strategies for cell biology. Nat. Methods 3, 591–596 (2006).
    Article CAS Google Scholar
  10. Prescher, J.A. & Bertozzi, C.R. Chemistry in living systems. Nat. Chem. Biol. 1, 13–21 (2005).
    Article CAS Google Scholar
  11. Ali, S.T. & Guest, J.R. Isolation and characterization of lipoylated and unlipoylated domains of the E2p subunit of the pyruvate dehydrogenase complex of Escherichia coli. Biochem. J. 271, 139–145 (1990).
    Article CAS Google Scholar
  12. Fujiwara, K. et al. Crystal structure of lipoate-protein ligase A from Escherichia coli. Determination of the lipoic acid-binding site. J. Biol. Chem. 280, 33645–33651 (2005).
    Article CAS Google Scholar
  13. Green, J.D., Laue, E.D., Perham, R.N., Ali, S.T. & Guest, J.R. Three-dimensional structure of a lipoyl domain from the dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. J. Mol. Biol. 248, 328–343 (1995).
    CAS PubMed Google Scholar
  14. Kiick, K.L., Saxon, E., Tirrell, D.A. & Bertozzi, C.R. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc. Natl. Acad. Sci. USA 99, 19–24 (2002).
    Article CAS Google Scholar
  15. Griffin, R.J. The medicinal chemistry of the azido group. Prog. Med. Chem. 31, 121–232 (1994).
    Article CAS Google Scholar
  16. Chen, I., Howarth, M., Lin, W. & Ting, A.Y. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat. Methods 2, 99–104 (2005).
    Article CAS Google Scholar
  17. Lin, C.W. & Ting, A.Y. Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells. J. Am. Chem. Soc. 128, 4542–4543 (2006).
    Article CAS Google Scholar
  18. Adams, S.R. et al. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J. Am. Chem. Soc. 124, 6063–6076 (2002).
    Article CAS Google Scholar
  19. Willnow, T.E. The low-density lipoprotein receptor gene family: multiple roles in lipid metabolism. J. Mol. Med. 77, 306–315 (1999).
    Article CAS Google Scholar
  20. Reche, P. & Perham, R.N. Structure and selectivity in post-translational modification: attaching the biotinyl-lysine and lipoyl-lysine swinging arms in multifunctional enzymes. EMBO J. 18, 2673–2682 (1999).
    Article CAS Google Scholar
  21. Pasquale, E.B. Eph receptor signalling casts a wide net on cell behaviour. Nat. Rev. Mol. Cell Biol. 6, 462–475 (2005).
    Article CAS Google Scholar
  22. Singh, A.B. & Harris, R.C. Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell. Signal. 17, 1183–1193 (2005).
    Article CAS Google Scholar
  23. Tuli, S.S. et al. Immunohistochemical localization of EGF, TGF-alpha, TGF-beta, and their receptors in rat corneas during healing of excimer laser ablation. Curr. Eye Res. 31, 709–719 (2006).
    Article CAS Google Scholar
  24. Flanagan, J.G. & Vanderhaeghen, P. The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 21, 309–345 (1998).
    Article CAS Google Scholar
  25. Wimmer-Kleikamp, S.H. & Lackmann, M. Eph-modulated cell morphology, adhesion and motility in carcinogenesis. IUBMB Life 57, 421–431 (2005).
    Article CAS Google Scholar
  26. George, N., Pick, H., Vogel, H., Johnsson, N. & Johnsson, K. Specific labeling of cell surface proteins with chemically diverse compounds. J. Am. Chem. Soc. 126, 8896–8897 (2004).
    Article CAS Google Scholar
  27. Griffin, B.A., Adams, S.R. & Tsien, R.Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).
    Article CAS Google Scholar
  28. Brock, R., Hamelers, I.H. & Jovin, T.M. Comparison of fixation protocols for adherent cultured cells applied to a GFP fusion protein of the epidermal growth factor receptor. Cytometry 35, 353–362 (1999).
    Article CAS Google Scholar
  29. McLean, A.J. & Milligan, G. Ligand regulation of green fluorescent protein-tagged forms of the human beta(1)- and beta(2)-adrenoceptors; comparisons with the unmodified receptors. Br. J. Pharmacol. 130, 1825–1832 (2000).
    Article CAS Google Scholar
  30. Zhou, Z. et al. Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem. Biol. 2, 337–346 (2007).
    Article CAS Google Scholar

Download references