A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types (original) (raw)
References
Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448, 318–324 (2007). ArticleCAS Google Scholar
Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature448, 313–317 (2007). ArticleCAS Google Scholar
Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell1, 55–70 (2007). ArticleCAS Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006). ArticleCAS Google Scholar
Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318, 1917–1920 (2007). ArticleCAS Google Scholar
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131, 861–872 (2007). ArticleCAS Google Scholar
Park, I.H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature451, 141–146 (2008). ArticleCAS Google Scholar
Lowry, W.E. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl. Acad. Sci. USA105, 2883–2888 (2008). ArticleCAS Google Scholar
Wernig, M., Meissner, A., Cassady, J.P. & Jaenisch, R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell2, 10–12 (2008). ArticleCAS Google Scholar
Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol.26, 101–106 (2008). ArticleCAS Google Scholar
Meissner, A., Wernig, M. & Jaenisch, R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat. Biotechnol.25, 1177–1181 (2007). ArticleCAS Google Scholar
Takahashi, K., Okita, K., Nakagawa, M. & Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nat. Protocols2, 3081–3089 (2007). ArticleCAS Google Scholar
Stadtfeld, M. & Maherali, N.D.T., B. & Hochedlinger, K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell2, 230–240 (2008). ArticleCAS Google Scholar
Brambrink, T. et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell2, 151–159 (2008). ArticleCAS Google Scholar
Hanna, J. et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science318, 1920–1923 (2007). ArticleCAS Google Scholar
Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell121, 465–477 (2005). ArticleCAS Google Scholar
Beard, C., Hochedlinger, K., Plath, K., Wutz, A. & Jaenisch, R. Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis44, 23–28 (2006). ArticleCAS Google Scholar
Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell113, 631–642 (2003). ArticleCAS Google Scholar
Boyer, L.A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell122, 947–956 (2005). ArticleCAS Google Scholar
Jaenisch, R. & Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell132, 567–582 (2008). ArticleCAS Google Scholar
Jones, P.H. & Watt, F.M. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell73, 713–724 (1993). ArticleCAS Google Scholar
Hanna, J. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell133, 250–264 (2008). ArticleCAS Google Scholar
Cole, M.F., Johnstone, S.E., Newman, J.J., Kagey, M.H. & Young, R.A. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev.22, 746–755 (2008). ArticleCAS Google Scholar
Aoi, T. et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science published online, doi:10.1126/science.1154884 (14 February 2008).
Stadtfeld, M., Brennand, K. & Hochedlinger, K. Reprogramming of pancreatic β cells into induced pluripotent stem cells. Curr. Biol.18, 890–894 (2008). ArticleCAS Google Scholar
Rheinwald, J. Culture of epithelial and mesothelial cells. in Cell Growth and Division: A Practical Approach (ed. Baserga, R.) 81–94 (Oxford Press, Oxford, 1989). Google Scholar
Vescovi, A.L., Galli, R. & Gritti, A. Adult neural stem cells. in Neural Stem Cells: Methods and Protocols (eds. Zigova, T., Sanberg, P.R. & Sanchez-Ramos, J.R.) 115–123 (Humana, New York, 2002). Chapter Google Scholar
Ferraris, R.P., Villenas, S.A. & Diamond, J. Regulation of brush-border enzyme activities and enterocyte migration rates in mouse small intestine. Am. J. Physiol.262, G1047–G1059 (1992). ArticleCAS Google Scholar