A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types (original) (raw)

References

  1. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).
    Article CAS Google Scholar
  2. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).
    Article CAS Google Scholar
  3. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).
    Article CAS Google Scholar
  4. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).
    Article CAS Google Scholar
  5. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).
    Article CAS Google Scholar
  6. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).
    Article CAS Google Scholar
  7. Park, I.H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).
    Article CAS Google Scholar
  8. Lowry, W.E. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl. Acad. Sci. USA 105, 2883–2888 (2008).
    Article CAS Google Scholar
  9. Wernig, M., Meissner, A., Cassady, J.P. & Jaenisch, R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2, 10–12 (2008).
    Article CAS Google Scholar
  10. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106 (2008).
    Article CAS Google Scholar
  11. Meissner, A., Wernig, M. & Jaenisch, R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat. Biotechnol. 25, 1177–1181 (2007).
    Article CAS Google Scholar
  12. Takahashi, K., Okita, K., Nakagawa, M. & Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nat. Protocols 2, 3081–3089 (2007).
    Article CAS Google Scholar
  13. Stadtfeld, M. & Maherali, N.D.T., B. & Hochedlinger, K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2, 230–240 (2008).
    Article CAS Google Scholar
  14. Brambrink, T. et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2, 151–159 (2008).
    Article CAS Google Scholar
  15. Hanna, J. et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318, 1920–1923 (2007).
    Article CAS Google Scholar
  16. Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–477 (2005).
    Article CAS Google Scholar
  17. Beard, C., Hochedlinger, K., Plath, K., Wutz, A. & Jaenisch, R. Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis 44, 23–28 (2006).
    Article CAS Google Scholar
  18. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003).
    Article CAS Google Scholar
  19. Boyer, L.A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).
    Article CAS Google Scholar
  20. Jaenisch, R. & Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567–582 (2008).
    Article CAS Google Scholar
  21. Jones, P.H. & Watt, F.M. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73, 713–724 (1993).
    Article CAS Google Scholar
  22. Hanna, J. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250–264 (2008).
    Article CAS Google Scholar
  23. Cole, M.F., Johnstone, S.E., Newman, J.J., Kagey, M.H. & Young, R.A. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev. 22, 746–755 (2008).
    Article CAS Google Scholar
  24. Aoi, T. et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science published online, doi:10.1126/science.1154884 (14 February 2008).
  25. Stadtfeld, M., Brennand, K. & Hochedlinger, K. Reprogramming of pancreatic β cells into induced pluripotent stem cells. Curr. Biol. 18, 890–894 (2008).
    Article CAS Google Scholar
  26. Rheinwald, J. Culture of epithelial and mesothelial cells. in Cell Growth and Division: A Practical Approach (ed. Baserga, R.) 81–94 (Oxford Press, Oxford, 1989).
    Google Scholar
  27. Vescovi, A.L., Galli, R. & Gritti, A. Adult neural stem cells. in Neural Stem Cells: Methods and Protocols (eds. Zigova, T., Sanberg, P.R. & Sanchez-Ramos, J.R.) 115–123 (Humana, New York, 2002).
    Chapter Google Scholar
  28. Ferraris, R.P., Villenas, S.A. & Diamond, J. Regulation of brush-border enzyme activities and enterocyte migration rates in mouse small intestine. Am. J. Physiol. 262, G1047–G1059 (1992).
    Article CAS Google Scholar

Download references