Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype (original) (raw)

References

  1. Anderson, N.L. & Anderson, N.G. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19, 1853–1861 (1998).
    Article CAS Google Scholar
  2. Pandey, A. & Mann, M. Proteomics to study genes and genomes. Nature 405, 837–846 (2000).
    Article CAS Google Scholar
  3. Corthals, G.L., Wasinger, V.C., Hochstrasser, D.F. & Sanchez, J.C. The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 21, 1104–1115 (2000).
    Article CAS Google Scholar
  4. Nelson, P.S. et al. Comprehensive analyses of prostate gene expression: convergence of expressed sequence tag databases, transcript profiling and proteomics. Electrophoresis 21, 1823–1831 (2000).
    Article CAS Google Scholar
  5. Santoni, V., Molloy, M. & Rabilloud, T. Membrane proteins and proteomics: un amour impossible? Electrophoresis 21, 1054–1070 (2000).
    Article CAS Google Scholar
  6. Gygi, S.P., Corthals, G.L., Zhang, Y., Rochon, Y. & Aebersold, R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc. Natl. Acad. Sci. USA 97, 9390–9395 (2000).
    Article CAS Google Scholar
  7. Legrain, P., Jestin, J.-L. & Schachter, V. From the analysis of protein complexes to proteome-wide linkage maps. Curr. Opin. Biotechnol. 11, 402–407 (2000).
    Article CAS Google Scholar
  8. Uetz, P. Two-hybrid arrays. Curr. Opin. Chem. Biol. 6, 57–62 (2002).
    Article CAS Google Scholar
  9. MacBeath, G. & Schreiber, S. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).
    CAS PubMed Google Scholar
  10. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001).
    Article CAS Google Scholar
  11. Cravatt, B. & Sorensen, E. Chemical strategies for the global analysis of protein function. Curr. Opin. Chem. Biol. 4, 663–668 (2000).
    Article CAS Google Scholar
  12. Kidd, D., Liu, Y. & Cravatt, B.F. Profiling serine hydrolase activities in complex proteomes. Biochemistry 40, 4005–4015 (2001).
    Article CAS Google Scholar
  13. Greenbaum, D., Medzihradsky, K.F., Burlingame, A. & Bogyo, M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol. 7, 569–581 (2000).
    Article CAS Google Scholar
  14. Liu, Y., Patricelli, M.P. & Cravatt, B.F. Activity-based protein profiling: the serine hydrolases. Proc. Natl. Acad. Sci. USA 96, 14694–14699 (1999).
    Article CAS Google Scholar
  15. Faleiro, L., Kobayashi, R., Fearnhead, H. & Lazebnik, Y. Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO J. 16, 2271–2281 (1997).
    Article CAS Google Scholar
  16. Adam, G.C., Cravatt, B.F. & Sorensen, E.J. Profiling the specific reactivity of the proteome with non-directed activity-based probes. Chem. Biol. 8, 81–95 (2001).
    Article CAS Google Scholar
  17. Patricelli, M.P., Giang, D.K., Stamp, L.M. & Burbaum, J.J. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes. Proteomics 1, 1067–1071 (2001).
    Article CAS Google Scholar
  18. Penzes, P., Wang, X. & Napoli, J.L. Enzymatic characteristics of retinal dehydrogenase type I expressed in E. coli. Biochim. Biophys. Acta 1342, 175–181 (1997).
    Article CAS Google Scholar
  19. Hara, A. et al. Distribution and characterization of dihydrodiol dehydrogenases in mammalian ocular tissues. Biochem. J. 275, 113–119 (1991).
    Article CAS Google Scholar
  20. Rochefort, H. et al. Estrogen receptor mediated inhibition of cancer cell invasion and motility: an overview. J. Steroid Biochem. Mol. Biol. 65, 163–168 (1998).
    Article CAS Google Scholar
  21. Kodym, R., Calkins, P. & Story, M. The cloning and characterization of a new stress response protein: a mammalian member of a family of θ class glutathione-_S_-transferase-like proteins. J. Biol. Chem. 274, 5131–5137 (1999).
    Article CAS Google Scholar
  22. Hempel, J. et al. Aldehyde dehydrogenase catalytic mechanism: a proposal. Adv. Exp. Med. Biol. 7, 53–59 (1999).
    Article Google Scholar
  23. Thompson, S. et al. Mechanistic studies on β-ketoacyl thiolase from Zoogloea ramigera: identification of the active-site nucleophile as Cys89, its mutation to Ser89, and kinetic and thermodynamic characterization of wild-type and mutant enzymes. Biochemistry 28, 5735–5742 (1989).
    Article CAS Google Scholar
  24. Board, P.G. et al. Identification, characterization, and crystal structure of the omega class glutathione transferases. J. Biol. Chem. 275, 24798–24806 (2000).
    Article CAS Google Scholar
  25. Armstrong, R.N. Kinetic and chemical mechanism of epoxide hydrolase. Drug Metab. Rev. 31, 71–86 (1999).
    Article CAS Google Scholar
  26. Terada, T. et al. Mutational analyses of cysteine residues of bovine dihydrodiol dehydrogenase 3. Biochim. Biophys. Acta 1547, 127–134 (2001).
    Article CAS Google Scholar
  27. Dakoji, S., Li, D., Agnihotri, G., Zhou, H.-Q. & Liu, H.-W. Studies on the inactivation of bovine liver enoyl-CoA hydratase by (methylenecyclopropyl)formyl-CoA: elucidation of the inactivation mechanism and identification of cysteine-114 as the entrapped nucleophile. J. Am. Chem. Soc. 123, 9749–9759 (2001).
    Article CAS Google Scholar
  28. Barrett, A.J. et al. L-trans-Epoxysuccinyl-leucylamido-(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem. J. 201, 189–198 (1982).
    Article CAS Google Scholar
  29. Dawson, J. & Holmes, C. Molecular mechanisms underlying inhibition of protein phosphatases by marine toxins. Front. Biosci. 4, D646–D658 (1999).
    Article CAS Google Scholar

Download references