Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype (original) (raw)
References
Anderson, N.L. & Anderson, N.G. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis19, 1853–1861 (1998). ArticleCAS Google Scholar
Pandey, A. & Mann, M. Proteomics to study genes and genomes. Nature405, 837–846 (2000). ArticleCAS Google Scholar
Corthals, G.L., Wasinger, V.C., Hochstrasser, D.F. & Sanchez, J.C. The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis21, 1104–1115 (2000). ArticleCAS Google Scholar
Nelson, P.S. et al. Comprehensive analyses of prostate gene expression: convergence of expressed sequence tag databases, transcript profiling and proteomics. Electrophoresis21, 1823–1831 (2000). ArticleCAS Google Scholar
Santoni, V., Molloy, M. & Rabilloud, T. Membrane proteins and proteomics: un amour impossible? Electrophoresis21, 1054–1070 (2000). ArticleCAS Google Scholar
Gygi, S.P., Corthals, G.L., Zhang, Y., Rochon, Y. & Aebersold, R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc. Natl. Acad. Sci. USA97, 9390–9395 (2000). ArticleCAS Google Scholar
Legrain, P., Jestin, J.-L. & Schachter, V. From the analysis of protein complexes to proteome-wide linkage maps. Curr. Opin. Biotechnol.11, 402–407 (2000). ArticleCAS Google Scholar
MacBeath, G. & Schreiber, S. Printing proteins as microarrays for high-throughput function determination. Science289, 1760–1763 (2000). CASPubMed Google Scholar
Zhu, H. et al. Global analysis of protein activities using proteome chips. Science293, 2101–2105 (2001). ArticleCAS Google Scholar
Cravatt, B. & Sorensen, E. Chemical strategies for the global analysis of protein function. Curr. Opin. Chem. Biol.4, 663–668 (2000). ArticleCAS Google Scholar
Kidd, D., Liu, Y. & Cravatt, B.F. Profiling serine hydrolase activities in complex proteomes. Biochemistry40, 4005–4015 (2001). ArticleCAS Google Scholar
Greenbaum, D., Medzihradsky, K.F., Burlingame, A. & Bogyo, M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol.7, 569–581 (2000). ArticleCAS Google Scholar
Liu, Y., Patricelli, M.P. & Cravatt, B.F. Activity-based protein profiling: the serine hydrolases. Proc. Natl. Acad. Sci. USA96, 14694–14699 (1999). ArticleCAS Google Scholar
Faleiro, L., Kobayashi, R., Fearnhead, H. & Lazebnik, Y. Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO J.16, 2271–2281 (1997). ArticleCAS Google Scholar
Adam, G.C., Cravatt, B.F. & Sorensen, E.J. Profiling the specific reactivity of the proteome with non-directed activity-based probes. Chem. Biol.8, 81–95 (2001). ArticleCAS Google Scholar
Patricelli, M.P., Giang, D.K., Stamp, L.M. & Burbaum, J.J. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes. Proteomics1, 1067–1071 (2001). ArticleCAS Google Scholar
Penzes, P., Wang, X. & Napoli, J.L. Enzymatic characteristics of retinal dehydrogenase type I expressed in E. coli. Biochim. Biophys. Acta1342, 175–181 (1997). ArticleCAS Google Scholar
Hara, A. et al. Distribution and characterization of dihydrodiol dehydrogenases in mammalian ocular tissues. Biochem. J.275, 113–119 (1991). ArticleCAS Google Scholar
Rochefort, H. et al. Estrogen receptor mediated inhibition of cancer cell invasion and motility: an overview. J. Steroid Biochem. Mol. Biol.65, 163–168 (1998). ArticleCAS Google Scholar
Kodym, R., Calkins, P. & Story, M. The cloning and characterization of a new stress response protein: a mammalian member of a family of θ class glutathione-_S_-transferase-like proteins. J. Biol. Chem.274, 5131–5137 (1999). ArticleCAS Google Scholar
Hempel, J. et al. Aldehyde dehydrogenase catalytic mechanism: a proposal. Adv. Exp. Med. Biol.7, 53–59 (1999). Article Google Scholar
Thompson, S. et al. Mechanistic studies on β-ketoacyl thiolase from Zoogloea ramigera: identification of the active-site nucleophile as Cys89, its mutation to Ser89, and kinetic and thermodynamic characterization of wild-type and mutant enzymes. Biochemistry28, 5735–5742 (1989). ArticleCAS Google Scholar
Board, P.G. et al. Identification, characterization, and crystal structure of the omega class glutathione transferases. J. Biol. Chem.275, 24798–24806 (2000). ArticleCAS Google Scholar
Armstrong, R.N. Kinetic and chemical mechanism of epoxide hydrolase. Drug Metab. Rev.31, 71–86 (1999). ArticleCAS Google Scholar
Terada, T. et al. Mutational analyses of cysteine residues of bovine dihydrodiol dehydrogenase 3. Biochim. Biophys. Acta1547, 127–134 (2001). ArticleCAS Google Scholar
Dakoji, S., Li, D., Agnihotri, G., Zhou, H.-Q. & Liu, H.-W. Studies on the inactivation of bovine liver enoyl-CoA hydratase by (methylenecyclopropyl)formyl-CoA: elucidation of the inactivation mechanism and identification of cysteine-114 as the entrapped nucleophile. J. Am. Chem. Soc.123, 9749–9759 (2001). ArticleCAS Google Scholar
Barrett, A.J. et al. L-trans-Epoxysuccinyl-leucylamido-(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem. J.201, 189–198 (1982). ArticleCAS Google Scholar
Dawson, J. & Holmes, C. Molecular mechanisms underlying inhibition of protein phosphatases by marine toxins. Front. Biosci.4, D646–D658 (1999). ArticleCAS Google Scholar