Efficient gene targeting by homologous recombination in rice (original) (raw)

References

  1. Bennetzen, J.L. & Freeling, M. Grasses as a single genetic system: genome composition, collinearity and compatibility. Trends Genet. 9, 259–261 (1993).
    Article CAS Google Scholar
  2. Gale, M.D. & Devos, K.M. Comparative genetics in the grasses. Proc. Natl. Acad. Sci. USA 95, 1971–1974 (1998).
    Article CAS Google Scholar
  3. Sasaki, T. & Burr, B. International Rice genome sequencing project: the effort to completely sequence the rice genome. Curr. Opin. Plant Biol. 3, 138–141 (2000).
    Article CAS Google Scholar
  4. Barry, G.F. The use of the Monsanto draft rice genome sequence in research. Plant Physiol. 125, 1164–1165 (2001).
    Article CAS Google Scholar
  5. Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92 (2002).
    Article CAS Google Scholar
  6. Goff, S.A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100 (2002).
    Article CAS Google Scholar
  7. Breyne, P. & Zabeau, M. Genome-wide expression analysis of plant cycle modulated genes. Curr. Opin. Plant Biol. 4, 136–142 (2001).
    Article CAS Google Scholar
  8. Vega, M.A. (ed.) Gene Targeting (CRC Press, Boca Raton, 1995).
    Google Scholar
  9. Puchta, H. & Hohn, B. From centMorgans to base pairs: homologous recombination in plants. Trends Plant Sci. 1, 340–348 (1996).
    Article Google Scholar
  10. Vergunst, A.C. & Hooykaas, P.J.J. Recombination in the plant genome and its application in biotechnology. Crit. Rev. Plant Sci. 18, 1–31 (1999).
    Article CAS Google Scholar
  11. Puchta, H. Gene replacement by homologous recombination in plants. Plant Mol. Biol. 48, 173–182 (2002).
    Article CAS Google Scholar
  12. Paszkowski, J., Baur, M., Bogucki, A. & Potrykus, I. Gene targeting in plants. EMBO J. 7, 4021–4026 (1988).
    Article CAS Google Scholar
  13. Risseeuw, E., Offringa, R., Franke-van Dijk, M.E.I. & Hookaas, P.J.J. Targeted recombination in plants using Agrobacterium coincides with additional rearrangements at the target locus. Plant J. 7, 109–119 (1995).
    Article CAS Google Scholar
  14. Kempin, S.A. et al. Targeted disruption in Arabidopsis. Nature 389, 802–803 (1997).
    Article CAS Google Scholar
  15. Hanin, M. et al. Gene targeting in Arabidopsis. Plant J. 8, 671–677 (2001).
    Google Scholar
  16. Wang, Z.-Y. et al. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J. 7, 613–622 (1995).
    Article CAS Google Scholar
  17. Nagano, H., Wu, L., Kawasaki, S., Kishima, Y. & Sano, Y. Genomic organization of the 260 kb surrounding the waxy locus in a Japonica rice. Genome 42, 1121–1126 (1999).
    Article CAS Google Scholar
  18. Terada, R. et al. Antisense Waxy genes with highly active promoters efficiently suppress Waxy gene expression in transgenic rice. Plant Cell Physiol. 41, 881–888 (2000).
    Article CAS Google Scholar
  19. Bilang, R., Iida, S., Peterson, A., Potrykus, I. & Paszkowski, J. The 3′-terminal region of the hygromycin-B-resistance gene is important for its activity in Escherichia coli and Nicotiana tabacum. Gene 100, 247–250 (1991).
    Article CAS Google Scholar
  20. Gierl, A., Schwarz-Sommer, Z. & Saedler, H. Molecular interactions between the components of the En-I transposable element system of Zea mays. EMBO J. 4, 579–583 (1985).
    Article CAS Google Scholar
  21. Yagi, T. et al. Homologous recombination at c-fyn locus of mouse embryonic stem cells with use of diphtheria toxin A-fragment gene in negative selection. Proc. Natl. Acad. Sci. USA 87, 9918–9922 (1990).
    Article CAS Google Scholar
  22. McElory, D., Blowers, A.D., Jenes, B. & Wu, R. Construction of expression vectors based on the rice actin (Act1) 5′ region for use in monocot transformation. Mol. Gen. Genet. 231, 150–160 (1991).
    Article Google Scholar
  23. Takimoto, I., Christensen, A.H., Quail, P.H., Uchimiya, H. & Toki, S. Non-systemic expression of a stress-responsive maize polyubiquitin gene (UBI-1) in transgenic rice plants. Plant Mol. Biol. 26, 1007–1012 (1994).
    Article CAS Google Scholar
  24. Tanaka, A. et al. Enhancement of foreign gene expression by a dicot intron in rice but not tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron. Nucleic Acids Res. 18, 6767–6770 (1990).
    Article CAS Google Scholar
  25. Hiei, Y., Ohta, S., Komari, T. & Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282 (1994).
    Article CAS Google Scholar
  26. Takahashi, S., Inagaki, Y., Satoh, H., Hoshino, A. & Iida, S. Capture of a genomic HMG domain sequence by the _En/Spm_-related transposable element Tpn1 in the Japanese morning glory. Mol. Gen. Genet. 261, 447–451 (1999).
    Article CAS Google Scholar
  27. Hohn, B., Levy, A.A. & Puchta, H. Elimination of selection markers from transgenic plants. Curr. Opin. Biotechnol. 12, 139–143 (2001).
    Article CAS Google Scholar
  28. Srivastava, V. & Ow, D.W. Biolistic mediated site-specific integration in rice. Mol. Breed. 8, 345–350 (2002).
    Article Google Scholar
  29. Saalbach, I. et al. A chimeric gene encoding the methionine-rich 2S albumin of the Brazil nut (Bertholletia excelsa H.B.K.) is stably expressed and inherited in transgenic grain legume. Mol. Gen. Genet. 242, 226–236 (1994).
    Article CAS Google Scholar
  30. Yamaguchi, T. et al. Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Plant Cell Physiol. 42, 451–461 (2001).
    Article CAS Google Scholar

Download references