Efficient gene targeting by homologous recombination in rice (original) (raw)
References
Bennetzen, J.L. & Freeling, M. Grasses as a single genetic system: genome composition, collinearity and compatibility. Trends Genet.9, 259–261 (1993). ArticleCAS Google Scholar
Gale, M.D. & Devos, K.M. Comparative genetics in the grasses. Proc. Natl. Acad. Sci. USA95, 1971–1974 (1998). ArticleCAS Google Scholar
Sasaki, T. & Burr, B. International Rice genome sequencing project: the effort to completely sequence the rice genome. Curr. Opin. Plant Biol.3, 138–141 (2000). ArticleCAS Google Scholar
Barry, G.F. The use of the Monsanto draft rice genome sequence in research. Plant Physiol.125, 1164–1165 (2001). ArticleCAS Google Scholar
Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science296, 79–92 (2002). ArticleCAS Google Scholar
Goff, S.A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science296, 92–100 (2002). ArticleCAS Google Scholar
Breyne, P. & Zabeau, M. Genome-wide expression analysis of plant cycle modulated genes. Curr. Opin. Plant Biol.4, 136–142 (2001). ArticleCAS Google Scholar
Vega, M.A. (ed.) Gene Targeting (CRC Press, Boca Raton, 1995). Google Scholar
Puchta, H. & Hohn, B. From centMorgans to base pairs: homologous recombination in plants. Trends Plant Sci.1, 340–348 (1996). Article Google Scholar
Vergunst, A.C. & Hooykaas, P.J.J. Recombination in the plant genome and its application in biotechnology. Crit. Rev. Plant Sci.18, 1–31 (1999). ArticleCAS Google Scholar
Puchta, H. Gene replacement by homologous recombination in plants. Plant Mol. Biol.48, 173–182 (2002). ArticleCAS Google Scholar
Paszkowski, J., Baur, M., Bogucki, A. & Potrykus, I. Gene targeting in plants. EMBO J.7, 4021–4026 (1988). ArticleCAS Google Scholar
Risseeuw, E., Offringa, R., Franke-van Dijk, M.E.I. & Hookaas, P.J.J. Targeted recombination in plants using Agrobacterium coincides with additional rearrangements at the target locus. Plant J.7, 109–119 (1995). ArticleCAS Google Scholar
Kempin, S.A. et al. Targeted disruption in Arabidopsis. Nature389, 802–803 (1997). ArticleCAS Google Scholar
Hanin, M. et al. Gene targeting in Arabidopsis. Plant J.8, 671–677 (2001). Google Scholar
Wang, Z.-Y. et al. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J.7, 613–622 (1995). ArticleCAS Google Scholar
Nagano, H., Wu, L., Kawasaki, S., Kishima, Y. & Sano, Y. Genomic organization of the 260 kb surrounding the waxy locus in a Japonica rice. Genome42, 1121–1126 (1999). ArticleCAS Google Scholar
Terada, R. et al. Antisense Waxy genes with highly active promoters efficiently suppress Waxy gene expression in transgenic rice. Plant Cell Physiol.41, 881–888 (2000). ArticleCAS Google Scholar
Bilang, R., Iida, S., Peterson, A., Potrykus, I. & Paszkowski, J. The 3′-terminal region of the hygromycin-B-resistance gene is important for its activity in Escherichia coli and Nicotiana tabacum. Gene100, 247–250 (1991). ArticleCAS Google Scholar
Gierl, A., Schwarz-Sommer, Z. & Saedler, H. Molecular interactions between the components of the En-I transposable element system of Zea mays. EMBO J.4, 579–583 (1985). ArticleCAS Google Scholar
Yagi, T. et al. Homologous recombination at c-fyn locus of mouse embryonic stem cells with use of diphtheria toxin A-fragment gene in negative selection. Proc. Natl. Acad. Sci. USA87, 9918–9922 (1990). ArticleCAS Google Scholar
McElory, D., Blowers, A.D., Jenes, B. & Wu, R. Construction of expression vectors based on the rice actin (Act1) 5′ region for use in monocot transformation. Mol. Gen. Genet.231, 150–160 (1991). Article Google Scholar
Takimoto, I., Christensen, A.H., Quail, P.H., Uchimiya, H. & Toki, S. Non-systemic expression of a stress-responsive maize polyubiquitin gene (UBI-1) in transgenic rice plants. Plant Mol. Biol.26, 1007–1012 (1994). ArticleCAS Google Scholar
Tanaka, A. et al. Enhancement of foreign gene expression by a dicot intron in rice but not tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron. Nucleic Acids Res.18, 6767–6770 (1990). ArticleCAS Google Scholar
Hiei, Y., Ohta, S., Komari, T. & Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J.6, 271–282 (1994). ArticleCAS Google Scholar
Takahashi, S., Inagaki, Y., Satoh, H., Hoshino, A. & Iida, S. Capture of a genomic HMG domain sequence by the _En/Spm_-related transposable element Tpn1 in the Japanese morning glory. Mol. Gen. Genet.261, 447–451 (1999). ArticleCAS Google Scholar
Hohn, B., Levy, A.A. & Puchta, H. Elimination of selection markers from transgenic plants. Curr. Opin. Biotechnol.12, 139–143 (2001). ArticleCAS Google Scholar
Srivastava, V. & Ow, D.W. Biolistic mediated site-specific integration in rice. Mol. Breed.8, 345–350 (2002). Article Google Scholar
Saalbach, I. et al. A chimeric gene encoding the methionine-rich 2S albumin of the Brazil nut (Bertholletia excelsa H.B.K.) is stably expressed and inherited in transgenic grain legume. Mol. Gen. Genet.242, 226–236 (1994). ArticleCAS Google Scholar
Yamaguchi, T. et al. Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Plant Cell Physiol.42, 451–461 (2001). ArticleCAS Google Scholar