Long-term multiple color imaging of live cells using quantum dot bioconjugates (original) (raw)

References

  1. Finley, K.R., Davidson, A.E. & Ekker, S.C. Three-color imaging using fluorescent proteins in living zebrafish embryos. Biotechniques 31, 66–72 (2001).
    Article CAS Google Scholar
  2. Giuliano, K.A., Post, P.L., Hahn, K.M. & Taylor, D.L. Fluorescent protein biosensors: measurement of molecular dynamics in living cells. Annu. Rev. Biophys. Biomol. Struct. 24, 405–434 (1995).
    Article CAS Google Scholar
  3. Johnson, I. Fluorescent probes for living cells. Histochem. J. 30, 123–140 (1998).
    Article CAS Google Scholar
  4. Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).
    Article CAS Google Scholar
  5. Mattoussi, H., Kuno, M.K., Goldman, E.R., George, P. & Mauro, J.M. in Optical Biosensors: Present and Future (eds. Ligler, F.S. & Rowe, C.A.) 537–569 (Elsevier, The Netherlands, 2002).
    Book Google Scholar
  6. Mattoussi, H. et al. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122, 12142–12150 (2000).
    Article CAS Google Scholar
  7. Han, M., Gao, X., Su, J.Z. & Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631–635 (2001).
    Article CAS Google Scholar
  8. Michalet, X. et al. Properties of fluorescent semiconductor nanocrystals and their application to biological labeling. Single Molec. 2, 261–276 (2001).
    Article CAS Google Scholar
  9. Chan, W.C., Maxwell, D.J., Gao, X., Bailey, R.E., Han, M. & Nie, S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13, 40–46 (2002).
    Article CAS Google Scholar
  10. Mattoussi, H. et al. Bioconjugation of highly luminescent colloidal CdSe-ZnS quantum dots with an engineered two-domain recombinant protein. Phys. Stat. Sol. 224, 277–283 (2001).
    Article CAS Google Scholar
  11. Goldman, E.R. et al. Avidin: a natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc. 124, 6378–6382 (2002).
    Article CAS Google Scholar
  12. Chan, W.C. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).
    Article CAS Google Scholar
  13. Goldman, E.R., Anderson, G.P., Tran, P.T., Mattoussi, H., Charles, P.T. & Mauro, J.M. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem. 74, 841–847 (2002).
    Article CAS Google Scholar
  14. Adamson, P., Paterson, H.F. & Hall, A. Intracellular localization of the P21rho proteins. J. Cell Biol. 119, 617–627 (1992).
    Article CAS Google Scholar
  15. Tomchik, K.J. & Devreotes, P.N. Adenosine 3',5′-monophosphate waves in Dictyostelium discoideum: a demonstration by isotope dilution-fluorography. Science 212, 443–446 (1981).
    Article CAS Google Scholar
  16. Parent, C.A. & Devreotes, P.N. Molecular genetics of signal transduction in Dictyostelium. Annu. Rev. Biochem. 65, 411–440 (1996).
    Article CAS Google Scholar
  17. Gerisch, G. & Wick, U. Intracellular oscillations and release of cyclic AMP from Dictyostelium cells. Biochem. Biophys. Res. Commun. 65, 364–370 (1975).
    Article CAS Google Scholar
  18. Chen, Y. & Simon, S.M. In situ biochemical demonstration that P-glycoprotein is a drug efflux pump with broad specificity. J. Cell Biol. 148, 863–870 (2000).
    Article CAS Google Scholar
  19. Rodrigez-Viejo, J. et al. Evidence of photo- and electrodarkening of (CdSe)ZnS quantum dot composites. J. Appl. Phys. 87, 8526–8534 (2000).
    Article Google Scholar
  20. Waddell, D.R. The spatial pattern of aggregation centres in the cellular slime mould. J. Embryol. Exp. Morphol. 70, 75–98 (1982).
    CAS PubMed Google Scholar
  21. Robertson, A. & Cohen, M.H. Control of developing fields. Ann. Rev. Biophys. Bioeng. 1, 409–464 (1972).
    Article CAS Google Scholar
  22. Watts, D.J. & Ashworth, J.M. Growth of myxamoebae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem. J. 119, 171–174 (1970).
    Article CAS Google Scholar
  23. De Souza, N.F. & Simon, S.M. Glycosylation affects the rate of traffic of the shaker potassium channel through the secretory pathway. Biochemistry 41, 11351–11361 (2002).
    Article CAS Google Scholar

Download references