Engineering a mevalonate pathway in Escherichia coli for production of terpenoids (original) (raw)

References

  1. Cragg, G.M. Paclitaxel (Taxol): a success story with valuable lessons for natural product drug discovery and development. Med. Res. Rev. 18, 315–331 (1998).
    Article CAS Google Scholar
  2. Dhingra, V., Rao, K.V. & Narasu, M.L. Current status of artemisinin and its derivatives as antimalarial drugs. Life Sci. 66, 279–300 (2000).
    Article CAS Google Scholar
  3. Danishefsky, S.J. et al. Total synthesis of baccatin III and taxol. J. Amer. Chem. Soc. 118, 2843–2859 (1996).
    Article CAS Google Scholar
  4. Nicolaou, K.C. et al. Total synthesis of eleutherobin. Angew. Chem. Int. Ed. 36, 2520–2524 (1997).
    Article CAS Google Scholar
  5. Avery, M.A., Chong, W.K.M. & Jennings-White, C. Stereoselective total synthesis of (+)-artemisinin, the antimalarial constituent of Artemisia annua L. J. Amer. Chem. Soc. 114, 974–979 (1992).
    Article CAS Google Scholar
  6. White, N.J. Artemisinin—Current status. Trans. R. Soc. Trop. Med. Hyg. Suppl. 88, 53–54 (1994).
    Google Scholar
  7. Ridley, R.G. Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 415, 686–693 (2002).
    Article CAS Google Scholar
  8. Haynes, R.K. Artemisinin and derivatives: the future for malaria treatment? Curr. Opin Infect. Dis. 14, 719–726 (2001).
    Article CAS Google Scholar
  9. Wallaart, T.E., Pras, N., Beekman, A.C. & Quax, W.J. Seasonal variation of artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin: proof for the existence of chemotypes. Planta Med. 66, 57–62 (2000).
    Article CAS Google Scholar
  10. Jennewein, S. & Croteau, R. Taxol: biosynthesis, molecular genetics, and biotechnological applications. Appl. Microbiol. Biotechnol. 57, 13–19 (2001).
    Article CAS Google Scholar
  11. Skeel, R.T. Handbook of Cancer Chemotherapy, edn. 5 (Lippincott Williams & Wilkins, Philadelphia, 1999).
    Google Scholar
  12. Baekelandt, M. Irofulven (MGI Pharma). Curr. Opin. Investig. Drugs 3, 1517–1526 (2002).
    CAS PubMed Google Scholar
  13. Amato, R.J., Perez, C. & Pagliaro, L. Irofulven, a novel inhibitor of DNA synthesis, in metastatic renal cell cancer. Invest. New Drugs 20, 413–417 (2002).
    Article CAS Google Scholar
  14. Boucher, Y. & Doolittle, W.F. The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Mol. Microbiol. 37, 703–716 (2000).
    Article CAS Google Scholar
  15. Rohdich, F. et al. Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc. Natl. Acad. Sci. USA 99, 1158–1163 (2002).
    Article CAS Google Scholar
  16. Connolly, D.M. & Winkler, M.E. Genetic and physiological relationships among the miaA gene, 2-methylthio-N6-(Δ2-isopentenyl)adenosine transfer RNA modification, and spontaneous mutagenesis in Escherichia coli K-12. J. Bacteriol. 171, 3233–3246 (1989).
    Article CAS Google Scholar
  17. Farmer, W.R. & Liao, J.C. Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol. Prog. 17, 57–61 (2001).
    Article CAS Google Scholar
  18. Kajiwara, S., Fraser, P.D., Kondo, K. & Misawa, N. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem. J. 324, 421–426 (1997).
    Article CAS Google Scholar
  19. Kim, S.-W. & Keasling, J.D. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol. Bioeng. 72, 408–415 (2001).
    Article CAS Google Scholar
  20. Mercke, P., Bengtsson, M., Bouwmeester, H.J., Posthumus, M.A. & Brodelius, P.E. Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Arch. Biochem. Biophys. 381, 173–180 (2000).
    Article CAS Google Scholar
  21. Martin, V.J.J., Yoshikuni, Y. & Keasling, J.D. The in vivo synthesis of plant sesquiterpenes by Escherichia coli. Biotechnol. Bioeng. 75, 497–503 (2001).
    Article CAS Google Scholar
  22. Kuzuyama, T., Takahashi, S. & Seto, H. Construction and characterization of Escherichia coli disruptants defective in the yaeM gene. Biosci. Biotechnol. Biochem. 63, 776–778 (1999).
    Article CAS Google Scholar
  23. Hahn, F.M., Hurlburt, A.P. & Poulter, C.D. Escherichia coli open reading frame 696 is idi, a nonessential gene encoding isopentenyl diphosphate isomerase. J. Bacteriol. 181, 4499–4504 (1999).
    CAS PubMed PubMed Central Google Scholar
  24. Van Geldre, E., Vergauwe, A. & Van den Eeckhout, E. State of the art of the production of the antimalarial compound artemisinin in plants. Plant Mol. Biol. 33, 199–209 (1997).
    Article CAS Google Scholar
  25. Bouwmeester, H.J. et al. Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochem. 52, 843–854 (1999).
    Article CAS Google Scholar
  26. Wallaart, T.E., Bouwmeester, H.J., Hille, J., Poppinga, L. & Maijers, N.C.A. Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 212, 460–465 (2001).
    Article CAS Google Scholar
  27. Chang, Y.J., Song, S.H., Park, S.H. & Kim, S.U. Amorpha-4,11-diene synthase of Artemisia annua: cDNA isolation and bacterial expression of a terpene synthase involved in artemisinin biosynthesis. Arch. Biochem. Biophys. 383, 178–184 (2000).
    Article CAS Google Scholar
  28. Hale, R.S. & Thompson, G. Codon optimization of the gene encoding a domain from human type 1 neurofibromin protein results in a threefold improvement in expression level in Escherichia coli. Protein Exper. Purif. 12, 185–188 (1998).
    Article CAS Google Scholar
  29. Sandmann, G. Combinatorial biosynthesis of carotenoids in a heterologous host: a powerful approach for the biosynthesis of novel structures. Chembiochem. 3, 629–635 (2002).
    Article CAS Google Scholar
  30. Huang, Q.L., Roessner, C.A., Croteau, R. & Scott, A.I. Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorgan. Med. Chem. 9, 2237–2242 (2001).
    Article CAS Google Scholar
  31. Matthews, P.D. & Wurtzel, E.T. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl. Microbiol. Biotechnol. 53, 396–400 (2000).
    Article CAS Google Scholar
  32. Albrecht, M., Misawa, N. & Sandmann, G. Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids β-carotene and zeaxanthin. Biotechnol. Lett. 21, 791–795 (1999).
    Article CAS Google Scholar
  33. Harker, M. & Bramley, P.M. Expression of prokaryotic 1-deoxy-D-xylulose-5-phosphatases in Escherichia coli increases carotenoid and ubiquinone biosynthesis. FEBS Lett. 448, 115–119 (1999).
    Article CAS Google Scholar
  34. Wang, C.-W., Oh, M.-K. & Liao, J.C. Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. Biotechnol. Bioeng. 62, 235–241 (1999).
    Article CAS Google Scholar
  35. Jung, M., ElSohly, H.N. & McChesney, J.D. Artemisinic acid: a versatile chiral synthon and bioprecursor to natural products. Planta Med. 56, 624 (1990).
    Article Google Scholar
  36. Duvold, T., Bravo, J.M., Pale-Grosdemange, C. & Rohmer, M. Biosynthesis of 2-_C_-methyl-D-erythritol, a putative C-5 intermediate in the mevalonate independent pathway for isoprenoid biosynthesis. Tetrahedron Lett. 38, 4769–4772 (1997).
    Article CAS Google Scholar
  37. Campos, N. et al. Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate: a novel system for the genetic analysis of the 2-_C_-methyl-D-erythritol 4-phosphate pathway for isoprenoid biosynthesis. Biochem. J. 353, 59–67 (2001).
    Article CAS Google Scholar
  38. Cunningham, F.X., Sun, Z., Chamovitz, D., Hirschberg, J. & Gantt, E. Molecular structure and enzymatic function of lycopene cyclase from the Cyanobacterium synechococcus sp. strain PCC7942. Plant Cell 6, 1107–1121 (1994).
    Article CAS Google Scholar
  39. Polakowski, T., Stahl, U. & Lang, C. Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl. Microbiol. Biotechnol. 49, 66–71 (1998).
    Article CAS Google Scholar
  40. Kovach, M.E. et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176 (1995).
    Article CAS Google Scholar
  41. Guzman, L.-M., Belin, D., Carson, M.J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).
    Article CAS Google Scholar
  42. Fujii, H., Koyama, T. & Ogura, K. Efficient enzymatic hydrolysis of polyprenyl pyrophosphates. Biochem. Biophys. Acta 712, 716–718 (1982).
    Article CAS Google Scholar
  43. Zhang, D.L. & Poulter, C.D. Analysis and purification of phosphorylated isoprenoids by reversed-phase HPLC. Anal. Biochem. 213, 356–361 (1993).
    Article CAS Google Scholar

Download references