Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikroskop. Anat.9, 413–420 (1873). Article Google Scholar
Sheppard, C.J.R. & Kompfner, R. Resonant scanning optical microscope. Appl. Opt.17, 2879–2882 (1978). ArticleCAS Google Scholar
Wilson, T. & Sheppard, C.J.R. Theory and Practice of Scanning Optical Microscopy (Academic Press, New York, 1984). Google Scholar
Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science248, 73–76 (1990). ArticleCAS Google Scholar
Pawley, J. Handbook of Biological Confocal Microscopy (Plenum, New York, 1995). Book Google Scholar
Basché, T., Moerner, W.E., Orrit, M. & Wild, U.P. Single-Molecule Optical Detection, Imaging and Spectroscopy (VCH, Weinheim, New York, Basel, Tokyo, 1997). Google Scholar
Weiss, S. Fluorescence spectroscopy of single biomolecules. Science283, 1676–1683 (1999). ArticleCAS Google Scholar
Ha, T., Enderle, T., Chemla, D.S. & Weiss, S. Dual-molecule spectroscopy: molecular rulers for the study of biological macromolecules. IEEE J. Select. Top. Quantum Electron.2, 1115–1128 (1996). ArticleCAS Google Scholar
Bornfleth, H., Sätzler, K., Eils, R. & Cremer, C. High-precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy. J. Microsc.189, 118–136 (1998). Article Google Scholar
Oijen, M.v., Köhler, J., Schmidt, J., Müller, M. & Brakenhoff, G.J. 3-Dimensional super-resolution by spectrally selective imaging. Chem. Phys. Lett.292, 183–187 (1998). Article Google Scholar
Lacoste, T.D. et al. Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc. Natl. Acad. Sci. USA97, 9461–9466 (2000). ArticleCAS Google Scholar
Hettich, C. et al. Nanometer resolution and coherent optical dipole coupling of two individual molecules. Science298, 385–389 (2002). ArticleCAS Google Scholar
Born, M. & Wolf, E. Principles of Optics 6th edn. (Pergamon, Oxford, 1993). Google Scholar
Hell, S.W. Double-confocal microscope. European Patent 0491289 (1990).
Hell, S. & Stelzer, E.H.K. Properties of a 4Pi-confocal fluorescence microscope. J. Opt. Soc. Am. A9, 2159–2166 (1992). Article Google Scholar
Gustafsson, M.G.L., Agard, D.A. & Sedat, J.W. Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses. Proc. Soc. Photo-Optical Instrumentation Engineers2412, 147–156 (1995). Google Scholar
Hell, S.W. & Stelzer, E.H.K. Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation. Opt. Commun.93, 277–282 (1992). Article Google Scholar
Egner, A., Jakobs, S. & Hell, S.W. Fast 100-nm resolution 3D-microscope reveals structural plasticity of mitochondria in live yeast. Proc. Natl. Acad. Sci. USA99, 3370–3375 (2002). ArticleCAS Google Scholar
Gustafsson, M.G.L., Agard, D.A. & Sedat, J.W. I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J. Microsc.195, 10–16 (1999). ArticleCAS Google Scholar
Pohl, D.W. & Courjon, D. Near Field Optics (Kluwer, Dordrecht, 1993). Book Google Scholar
Toraldo di Francia, G. Supergain antennas and optical resolving power. Nuovo Cimento Suppl.9, 426–435 (1952). Article Google Scholar
Lukosz, W. Optical systems with resolving powers exceeding the classical limit. J. Opt. Soc. Am.56, 1463–1472 (1966). ArticleCAS Google Scholar
Xu, C., Zipfel, W., Shear, J.B., Williams, R.M. & Webb, W.W. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc. Natl. Acad. Sci. USA93, 10763–10768 (1996). ArticleCAS Google Scholar
Hänninen, P.E., Lehtelä, L. & Hell, S.W. Two- and multiphoton excitation of conjugate dyes with continuous wave lasers. Opt. Commun.130, 29–33 (1996). Article Google Scholar
Schönle, A., Hänninen, P.E. & Hell, S.W. Nonlinear fluorescence through intermolecular energy transfer and resolution increase in fluorescence microscopy. Ann. Phys. (Leipzig)8, 115–133 (1999). Article Google Scholar
Schönle, A. & Hell, S.W. Far-field fluorescence microscopy with repetitive excitation. Eur. Phys. J. D6, 283–290 (1999). Article Google Scholar
Hell, S.W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy. Opt. Lett.19, 780–782 (1994). ArticleCAS Google Scholar
Hell, S.W. & Kroug, M. Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit. Appl. Phys. B60, 495–497 (1995). Article Google Scholar
Hell, S.W. in Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering in Topics in Fluorescence Spectroscopy Vol. 5. (ed. Lakowicz, J.R.) 361–422 (Plenum, New York, 1997). Google Scholar
Heintzmann, R., Jovin, T.M. & Cremer, C. Saturated patterned excitation microscopy—a concept for optical resolution improvement. J. Opt. Soc. Am. A19, 1599–1609 (2002). Article Google Scholar
Hell, S.W., Jakobs, S. & Kastrup, L. Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl. Phys. A77, 859–860 (2003). ArticleCAS Google Scholar
Westphal, V., Kastrup, L. & Hell, S.W. Lateral resolution of 28nm (λ/25) in far-field fluorescence microscopy. Appl. Phys. B77, 377–380 (2003). ArticleCAS Google Scholar
Lanni, F. Applications of Fluorescence in the Biomedical Sciences 1st edn. (Liss, New York, 1986). Google Scholar
Bailey, B., Farkas, D.L., Taylor, D.L. & Lanni, F. Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature366, 44–48 (1993). ArticleCAS Google Scholar
Schrader, M. & Hell, S.W. 4Pi-confocal images with axial superresolution. J. Microsc.183, 189–193 (1996). Article Google Scholar
Hell, S.W., Schrader, M. & van der Voort, H.T.M. Far-field fluorescence microscopy with three-dimensional resolution in the 100 nm range. J. Microsc.185, 1–5 (1997). Article Google Scholar
Nagorni, M. & Hell, S.W. Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts. J. Opt. Soc. Am. A18, 36–48 (2001). ArticleCAS Google Scholar
Holmes, T.J. Maximum-likelihood image restoration adapted for non-coherent optical imaging. J. Opt. Soc. Am. A5, 666–673 (1988). ArticleCAS Google Scholar
Carrington, W.A. et al. Superresolution in three-dimensional images of fluorescence in cells with minimal light exposure. Science268, 1483–1487 (1995). ArticleCAS Google Scholar
Holmes, T.J. et al. Light microscopic images reconstructed by maximum likelihood deconvolution in Handbook of Biological Confocal Microscopy (ed. Pawley, J.) 389–400 (Plenum, New York, 1995). Chapter Google Scholar
Nagorni, M. & Hell, S.W. 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution. J. Struct. Biol.123, 236–247 (1998). ArticleCAS Google Scholar
Hell, S.W. & Nagorni, M. 4Pi confocal microscopy with alternate interference. Optics Lett.23, 1567–1569 (1998). ArticleCAS Google Scholar
Bahlmann, K., Jakobs, S. & Hell, S.W. 4Pi-confocal microscopy of live cells. Ultramicroscopy87, 155–164 (2001). ArticleCAS Google Scholar
Egner, A., Goroshkov, A., Verrier, S., Söling, H.-D. & Hell, S.W. Golgi apparatus of live mammalian cell at 100 nm resolution. J. Struct. Biol. in the press (2003).
Gustafsson, M.G., Agard, D.A. & Sedat, J.W. 3D widefield microscopy with two objective lenses: experimental verification of improved axial resolution. in Three-Dimensional Microscopy: Image Acquisition and Processing III (eds. Cogswell, C., Kino, G.S. & Wilson, T.) 62–66 (SPIE, New York, 1996). Chapter Google Scholar
Nagorni, M. & Hell, S.W. Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. II. Power and limitation of nonlinear image restoration. J. Opt. Soc. Am. A18, 49–54 (2001). ArticleCAS Google Scholar
Gustafsson, M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc.198, 82–87 (2000). ArticleCAS Google Scholar
Bertero, M., De Mol, C., Pike, E.R. & Walker, J.G. Resolution in diffraction-limited imaging, a singular value analysis. IV. The case of uncertain localization or non-uniform illumination of the object. Opt. Acta31, 923–946 (1984). Article Google Scholar
Barth, M. & Stelzer, E. Boosting the optical transfer function with a spatially resolving detector in a high numerical aperture confocal reflection microscope. Optik96, 53–58 (1994). Google Scholar
Walker, J.G. et al. Superresolving scanning optical microscopy using holographic optical processing. J. Opt. Soc. Am. A10, 59–64 (1993). ArticleCAS Google Scholar
Young, M.R., Davies, R.E., Pike, E.R., Walker, J.G. & Bertero, M. Superresolution in confocal scanning microscopy: experimental confirmation in the 1D coherent case. Europhys. Lett.9, 773–778 (1989). Article Google Scholar
Dyba, M. & Hell, S.W. Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution. Phys. Rev. Lett.88, 163901 (2002). Article Google Scholar
Klar, T.A., Jakobs, S., Dyba, M., Egner, A. & Hell, S.W. Fluorescence microscopy with diffraction resolution limit broken by stimulated emission. Proc. Natl. Acad. Sci. USA97, 8206–8210 (2000). ArticleCAS Google Scholar
Klar, T.A., Engel, E. & Hell, S.W. Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. Phys. Rev. E64, 066613, 066611–066619 (2001). ArticleCAS Google Scholar
Dyba, M. & Hell, S.W. Photostability of a fluorescent marker under pulsed excited–state depletion through stimulated emission. Appl. Opt.42, 5123–5129 (2003). Article Google Scholar
Westphal, V., Blanca, C.M., Dyba, M., Kastrup, L. & Hell, S.W. Laser-diode–stimulated emission depletion microscopy. Appl. Phys. Lett.82, 3125–3127 (2003). ArticleCAS Google Scholar
Dyba, M., Jakobs, S. & Hell, S.W. Immunofluorescence stimulated emission depletion microscopy. Nat. Biotechnol.21, 1303–1304 (2003). ArticleCAS Google Scholar
Gryczynski, I., Bogdanov, V. & Lakowicz, J.R. Light quenching and depolarization of fluorescence observed with laser pulses. A new experimental opportunity in time-resolved fluorescence spectroscopy. Biophys. Chem.49, 223–232 (1994). ArticleCAS Google Scholar
Lakowicz, J.R. & Gryczynski, I. in Topics in Fluorescence Spectroscopy Vol. 5 (ed. Lakowicz, J.R.) 305–355 (Plenum, New York, 1997). Google Scholar
Lakowicz, J.R. Principles of Fluorescence Spectroscopy (Plenum, New York, 1983). Book Google Scholar
Irie, M., Fukaminato, T., Sasaki, T., Tamai, N. & Kawai, T. A digital fluorescent molecular photoswitch. Nature420, 759–760 (2002). ArticleCAS Google Scholar
Lukyanov, K.A. et al. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J. Biol. Chem.275, 25879–25882 (2000). ArticleCAS Google Scholar
Hänninen, P. Beyond the diffraction limit. Nature419, 802 (2002). Article Google Scholar
Stephens, D.J. & Allen, V.J. Light microscopy techniques for live cell imaging. Science300, 82–91 (2003). ArticleCAS Google Scholar
Shen, Y.R. The Principles of Nonlinear Optics Edn. 1 (Wiley, New York, 1984). Google Scholar
Einstein, A. Zur Quantentheorie der Strahlung. Physik. Zeitschr.18, 121–128 (1917). CAS Google Scholar
Goodman, J.W. Introduction to Fourier Optics (McGraw-Hill, New York, 1968). Google Scholar
Magde, D., Elson, E.L. & Webb, W.W. Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett.29, 705–708 (1972). ArticleCAS Google Scholar
Eigen, M. & Rigler, R. Sorting single molecules: applications to diagnostics and evolutionary biotechnology. Proc. Natl. Acad. Sci. USA91, 5740–5747 (1994). ArticleCAS Google Scholar
Elson, E.L. & Rigler, R. (eds.) Fluorescence Correlation Spectroscopy. Theory and Applications (Springer, Berlin, 2001). Google Scholar
Levene, M.J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science299, 682–686 (2003). ArticleCAS Google Scholar
Weiss, S. Shattering the diffraction limit of light: a revolution in fluorescence microscopy? Proc. Nat. Acad. Sc. USA97, 8747–8749 (2000). ArticleCAS Google Scholar
Laurence, T.A. & Weiss, S. How to detect weak pairs. Science299, 667–668 (2003). ArticleCAS Google Scholar