Toward fluorescence nanoscopy (original) (raw)

References

  1. Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikroskop. Anat. 9, 413–420 (1873).
    Article Google Scholar
  2. Sheppard, C.J.R. & Kompfner, R. Resonant scanning optical microscope. Appl. Opt. 17, 2879–2882 (1978).
    Article CAS Google Scholar
  3. Wilson, T. & Sheppard, C.J.R. Theory and Practice of Scanning Optical Microscopy (Academic Press, New York, 1984).
    Google Scholar
  4. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).
    Article CAS Google Scholar
  5. Pawley, J. Handbook of Biological Confocal Microscopy (Plenum, New York, 1995).
    Book Google Scholar
  6. Basché, T., Moerner, W.E., Orrit, M. & Wild, U.P. Single-Molecule Optical Detection, Imaging and Spectroscopy (VCH, Weinheim, New York, Basel, Tokyo, 1997).
    Google Scholar
  7. Weiss, S. Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999).
    Article CAS Google Scholar
  8. Ha, T., Enderle, T., Chemla, D.S. & Weiss, S. Dual-molecule spectroscopy: molecular rulers for the study of biological macromolecules. IEEE J. Select. Top. Quantum Electron. 2, 1115–1128 (1996).
    Article CAS Google Scholar
  9. Bornfleth, H., Sätzler, K., Eils, R. & Cremer, C. High-precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy. J. Microsc. 189, 118–136 (1998).
    Article Google Scholar
  10. Oijen, M.v., Köhler, J., Schmidt, J., Müller, M. & Brakenhoff, G.J. 3-Dimensional super-resolution by spectrally selective imaging. Chem. Phys. Lett. 292, 183–187 (1998).
    Article Google Scholar
  11. Lacoste, T.D. et al. Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc. Natl. Acad. Sci. USA 97, 9461–9466 (2000).
    Article CAS Google Scholar
  12. Hettich, C. et al. Nanometer resolution and coherent optical dipole coupling of two individual molecules. Science 298, 385–389 (2002).
    Article CAS Google Scholar
  13. Born, M. & Wolf, E. Principles of Optics 6th edn. (Pergamon, Oxford, 1993).
    Google Scholar
  14. Hell, S.W. Double-confocal microscope. European Patent 0491289 (1990).
  15. Hell, S. & Stelzer, E.H.K. Properties of a 4Pi-confocal fluorescence microscope. J. Opt. Soc. Am. A 9, 2159–2166 (1992).
    Article Google Scholar
  16. Gustafsson, M.G.L., Agard, D.A. & Sedat, J.W. Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses. Proc. Soc. Photo-Optical Instrumentation Engineers 2412, 147–156 (1995).
    Google Scholar
  17. Hell, S.W. & Stelzer, E.H.K. Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation. Opt. Commun. 93, 277–282 (1992).
    Article Google Scholar
  18. Egner, A., Jakobs, S. & Hell, S.W. Fast 100-nm resolution 3D-microscope reveals structural plasticity of mitochondria in live yeast. Proc. Natl. Acad. Sci. USA 99, 3370–3375 (2002).
    Article CAS Google Scholar
  19. Gustafsson, M.G.L., Agard, D.A. & Sedat, J.W. I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J. Microsc. 195, 10–16 (1999).
    Article CAS Google Scholar
  20. Pohl, D.W. & Courjon, D. Near Field Optics (Kluwer, Dordrecht, 1993).
    Book Google Scholar
  21. Toraldo di Francia, G. Supergain antennas and optical resolving power. Nuovo Cimento Suppl. 9, 426–435 (1952).
    Article Google Scholar
  22. Lukosz, W. Optical systems with resolving powers exceeding the classical limit. J. Opt. Soc. Am. 56, 1463–1472 (1966).
    Article CAS Google Scholar
  23. Xu, C., Zipfel, W., Shear, J.B., Williams, R.M. & Webb, W.W. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc. Natl. Acad. Sci. USA 93, 10763–10768 (1996).
    Article CAS Google Scholar
  24. Hänninen, P.E., Lehtelä, L. & Hell, S.W. Two- and multiphoton excitation of conjugate dyes with continuous wave lasers. Opt. Commun. 130, 29–33 (1996).
    Article Google Scholar
  25. Schönle, A., Hänninen, P.E. & Hell, S.W. Nonlinear fluorescence through intermolecular energy transfer and resolution increase in fluorescence microscopy. Ann. Phys. (Leipzig) 8, 115–133 (1999).
    Article Google Scholar
  26. Schönle, A. & Hell, S.W. Far-field fluorescence microscopy with repetitive excitation. Eur. Phys. J. D 6, 283–290 (1999).
    Article Google Scholar
  27. Hell, S.W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy. Opt. Lett. 19, 780–782 (1994).
    Article CAS Google Scholar
  28. Hell, S.W. & Kroug, M. Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit. Appl. Phys. B 60, 495–497 (1995).
    Article Google Scholar
  29. Hell, S.W. in Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering in Topics in Fluorescence Spectroscopy Vol. 5. (ed. Lakowicz, J.R.) 361–422 (Plenum, New York, 1997).
    Google Scholar
  30. Heintzmann, R., Jovin, T.M. & Cremer, C. Saturated patterned excitation microscopy—a concept for optical resolution improvement. J. Opt. Soc. Am. A 19, 1599–1609 (2002).
    Article Google Scholar
  31. Hell, S.W., Jakobs, S. & Kastrup, L. Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl. Phys. A 77, 859–860 (2003).
    Article CAS Google Scholar
  32. Westphal, V., Kastrup, L. & Hell, S.W. Lateral resolution of 28nm (λ/25) in far-field fluorescence microscopy. Appl. Phys. B 77, 377–380 (2003).
    Article CAS Google Scholar
  33. Lanni, F. Applications of Fluorescence in the Biomedical Sciences 1st edn. (Liss, New York, 1986).
    Google Scholar
  34. Bailey, B., Farkas, D.L., Taylor, D.L. & Lanni, F. Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 366, 44–48 (1993).
    Article CAS Google Scholar
  35. Schrader, M. & Hell, S.W. 4Pi-confocal images with axial superresolution. J. Microsc. 183, 189–193 (1996).
    Article Google Scholar
  36. Hell, S.W., Schrader, M. & van der Voort, H.T.M. Far-field fluorescence microscopy with three-dimensional resolution in the 100 nm range. J. Microsc. 185, 1–5 (1997).
    Article Google Scholar
  37. Nagorni, M. & Hell, S.W. Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts. J. Opt. Soc. Am. A 18, 36–48 (2001).
    Article CAS Google Scholar
  38. Holmes, T.J. Maximum-likelihood image restoration adapted for non-coherent optical imaging. J. Opt. Soc. Am. A 5, 666–673 (1988).
    Article CAS Google Scholar
  39. Carrington, W.A. et al. Superresolution in three-dimensional images of fluorescence in cells with minimal light exposure. Science 268, 1483–1487 (1995).
    Article CAS Google Scholar
  40. Holmes, T.J. et al. Light microscopic images reconstructed by maximum likelihood deconvolution in Handbook of Biological Confocal Microscopy (ed. Pawley, J.) 389–400 (Plenum, New York, 1995).
    Chapter Google Scholar
  41. Nagorni, M. & Hell, S.W. 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution. J. Struct. Biol. 123, 236–247 (1998).
    Article CAS Google Scholar
  42. Hell, S.W. & Nagorni, M. 4Pi confocal microscopy with alternate interference. Optics Lett. 23, 1567–1569 (1998).
    Article CAS Google Scholar
  43. Bahlmann, K., Jakobs, S. & Hell, S.W. 4Pi-confocal microscopy of live cells. Ultramicroscopy 87, 155–164 (2001).
    Article CAS Google Scholar
  44. Egner, A., Goroshkov, A., Verrier, S., Söling, H.-D. & Hell, S.W. Golgi apparatus of live mammalian cell at 100 nm resolution. J. Struct. Biol. in the press (2003).
  45. Gustafsson, M.G., Agard, D.A. & Sedat, J.W. 3D widefield microscopy with two objective lenses: experimental verification of improved axial resolution. in Three-Dimensional Microscopy: Image Acquisition and Processing III (eds. Cogswell, C., Kino, G.S. & Wilson, T.) 62–66 (SPIE, New York, 1996).
    Chapter Google Scholar
  46. Gustafsson, M.G.L. Extended resolution fluorescence microscopy. Curr. Opin. Struct. Biol. 9, 627–634 (1999).
    Article CAS Google Scholar
  47. Nagorni, M. & Hell, S.W. Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. II. Power and limitation of nonlinear image restoration. J. Opt. Soc. Am. A 18, 49–54 (2001).
    Article CAS Google Scholar
  48. Gustafsson, M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).
    Article CAS Google Scholar
  49. Bertero, M., De Mol, C., Pike, E.R. & Walker, J.G. Resolution in diffraction-limited imaging, a singular value analysis. IV. The case of uncertain localization or non-uniform illumination of the object. Opt. Acta 31, 923–946 (1984).
    Article Google Scholar
  50. Barth, M. & Stelzer, E. Boosting the optical transfer function with a spatially resolving detector in a high numerical aperture confocal reflection microscope. Optik 96, 53–58 (1994).
    Google Scholar
  51. Walker, J.G. et al. Superresolving scanning optical microscopy using holographic optical processing. J. Opt. Soc. Am. A 10, 59–64 (1993).
    Article CAS Google Scholar
  52. Young, M.R., Davies, R.E., Pike, E.R., Walker, J.G. & Bertero, M. Superresolution in confocal scanning microscopy: experimental confirmation in the 1D coherent case. Europhys. Lett. 9, 773–778 (1989).
    Article Google Scholar
  53. Dyba, M. & Hell, S.W. Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution. Phys. Rev. Lett. 88, 163901 (2002).
    Article Google Scholar
  54. Klar, T.A., Jakobs, S., Dyba, M., Egner, A. & Hell, S.W. Fluorescence microscopy with diffraction resolution limit broken by stimulated emission. Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
    Article CAS Google Scholar
  55. Klar, T.A., Engel, E. & Hell, S.W. Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. Phys. Rev. E 64, 066613, 066611–066619 (2001).
    Article CAS Google Scholar
  56. Dyba, M. & Hell, S.W. Photostability of a fluorescent marker under pulsed excited–state depletion through stimulated emission. Appl. Opt. 42, 5123–5129 (2003).
    Article Google Scholar
  57. Westphal, V., Blanca, C.M., Dyba, M., Kastrup, L. & Hell, S.W. Laser-diode–stimulated emission depletion microscopy. Appl. Phys. Lett. 82, 3125–3127 (2003).
    Article CAS Google Scholar
  58. Dyba, M., Jakobs, S. & Hell, S.W. Immunofluorescence stimulated emission depletion microscopy. Nat. Biotechnol. 21, 1303–1304 (2003).
    Article CAS Google Scholar
  59. Gryczynski, I., Bogdanov, V. & Lakowicz, J.R. Light quenching and depolarization of fluorescence observed with laser pulses. A new experimental opportunity in time-resolved fluorescence spectroscopy. Biophys. Chem. 49, 223–232 (1994).
    Article CAS Google Scholar
  60. Lakowicz, J.R. & Gryczynski, I. in Topics in Fluorescence Spectroscopy Vol. 5 (ed. Lakowicz, J.R.) 305–355 (Plenum, New York, 1997).
    Google Scholar
  61. Lakowicz, J.R. Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
    Book Google Scholar
  62. Irie, M., Fukaminato, T., Sasaki, T., Tamai, N. & Kawai, T. A digital fluorescent molecular photoswitch. Nature 420, 759–760 (2002).
    Article CAS Google Scholar
  63. Lukyanov, K.A. et al. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J. Biol. Chem. 275, 25879–25882 (2000).
    Article CAS Google Scholar
  64. Hänninen, P. Beyond the diffraction limit. Nature 419, 802 (2002).
    Article Google Scholar
  65. Stephens, D.J. & Allen, V.J. Light microscopy techniques for live cell imaging. Science 300, 82–91 (2003).
    Article CAS Google Scholar
  66. Shen, Y.R. The Principles of Nonlinear Optics Edn. 1 (Wiley, New York, 1984).
    Google Scholar
  67. Einstein, A. Zur Quantentheorie der Strahlung. Physik. Zeitschr. 18, 121–128 (1917).
    CAS Google Scholar
  68. Goodman, J.W. Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
    Google Scholar
  69. Magde, D., Elson, E.L. & Webb, W.W. Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705–708 (1972).
    Article CAS Google Scholar
  70. Eigen, M. & Rigler, R. Sorting single molecules: applications to diagnostics and evolutionary biotechnology. Proc. Natl. Acad. Sci. USA 91, 5740–5747 (1994).
    Article CAS Google Scholar
  71. Elson, E.L. & Rigler, R. (eds.) Fluorescence Correlation Spectroscopy. Theory and Applications (Springer, Berlin, 2001).
    Google Scholar
  72. Levene, M.J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).
    Article CAS Google Scholar
  73. Weiss, S. Shattering the diffraction limit of light: a revolution in fluorescence microscopy? Proc. Nat. Acad. Sc. USA 97, 8747–8749 (2000).
    Article CAS Google Scholar
  74. Laurence, T.A. & Weiss, S. How to detect weak pairs. Science 299, 667–668 (2003).
    Article CAS Google Scholar

Download references