Nonlinear magic: multiphoton microscopy in the biosciences (original) (raw)
References
Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science248, 73–76 (1990). CASPubMed Google Scholar
Yuste, R. & Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature375, 682–684 (1995). CASPubMed Google Scholar
Mainen, Z.F., Malinow, R. & Svoboda, K. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature399, 151–155 (1999). CASPubMed Google Scholar
Rose, C.R., Kovalchuk, Y., Eilers, J. & Konnerth, A. Two-photon Na+ imaging in spines and fine dendrites of central neurons. Pflugers Arch.439, 201–207 (1999). CASPubMed Google Scholar
Tan, Y.P. & Llano, I. Modulation by K+ channels of action potential-evoked intracellular Ca2+ concentration rises in rat cerebellar basket cell axons. J. Physiol.520 Pt 1, 65–78 (1999). CASPubMedPubMed Central Google Scholar
Cox, C.L., Denk, W., Tank, D.W. & Svoboda, K. Action potentials reliably invade axonal arbors of rat neocortical neurons. Proc. Natl. Acad. Sci. USA97, 9724–9728 (2000). CASPubMedPubMed Central Google Scholar
Majewska, A., Tashiro, A. & Yuste, R. Regulation of spine calcium dynamics by rapid spine motility. J. Neurosci.20, 8262–8268 (2000). CASPubMedPubMed Central Google Scholar
Oertner, T.G. Functional imaging of single synapses in brain slices. Exp. Physiol.87, 733–736 (2002). PubMed Google Scholar
Frick, A., Magee, J., Koester, H.J., Migliore, M. & Johnston, D. Normalization of Ca2+ signals by small oblique dendrites of CA1 pyramidal neurons. J. Neurosci.23, 3243–3250 (2003). CASPubMedPubMed Central Google Scholar
Lendvai, B., Zelles, T., Rozsa, B. & Vizi, E.S. A vinca alkaloid enhances morphological dynamics of dendritic spines of neocortical layer 2/3 pyramidal cells. Brain Res. Bull.59, 257–260 (2003). CASPubMed Google Scholar
Sabatini, B.L. & Svoboda, K. Analysis of calcium channels in single spines using optical fluctuation analysis. Nature408, 589–593 (2000). CASPubMed Google Scholar
Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D.W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature385, 161–165 (1997). CASPubMed Google Scholar
Helmchen, F., Svoboda, K., Denk, W. & Tank, D.W. In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat. Neurosci.2, 989–996 (1999). CASPubMed Google Scholar
Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA100, 7319–7324 (2003). CASPubMedPubMed Central Google Scholar
Helmchen, F. & Waters, J. Ca(2+) imaging in the mammalian brain in vivo. Eur. J. Pharmacol.447, 119–129 (2002). CASPubMed Google Scholar
Svoboda, K., Tank, D.W. & Denk, W. Direct measurement of coupling between dendritic spines and shafts. Science272, 716–719 (1996). CASPubMed Google Scholar
Ladewig, T. et al. Spatial profiles of store-dependent calcium release in motoneurones of the nucleus hypoglossus from newborn mouse. J. Physiol.547, 775–787 (2003). CASPubMedPubMed Central Google Scholar
Christie, R.H. et al. Growth arrest of individual senile plaques in a model of Alzheimer's disease observed by in vivo multiphoton microscopy. J. Neurosci.21, 858–864 (2001). CASPubMedPubMed Central Google Scholar
Bacskai, B.J. et al. Non-Fc-mediated mechanisms are involved in clearance of amyloid-beta in vivo by immunotherapy. J. Neurosci.22, 7873–7878 (2002). CASPubMedPubMed Central Google Scholar
D'Amore, J.D. et al. In vivo multiphoton imaging of a transgenic mouse model of Alzheimer disease reveals marked thioflavine-S-associated alterations in neurite trajectories. J. Neuropathol. Exp. Neurol.62, 137–145 (2003). CASPubMed Google Scholar
Bacskai, B.J. et al. Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat. Med.7, 369–372 (2001). CASPubMed Google Scholar
Brown, E.B. et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat. Med.7, 864–868 (2001). CASPubMed Google Scholar
McDonald, D.M. & Choyke, P.L. Imaging of angiogenesis: from microscope to clinic. Nat. Med.9, 713–725 (2003). CASPubMed Google Scholar
Wang, W. et al. Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res.62, 6278–6288 (2002). CASPubMed Google Scholar
Wolf, K. et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol.160, 267–277 (2003). CASPubMedPubMed Central Google Scholar
Cahalan, M.D., Parker, I., Wei, S.H. & Miller, M.J. Two-photon tissue imaging: seeing the immune system in a fresh light. Nat. Rev. Immunol.2, 872–880 (2002). CASPubMedPubMed Central Google Scholar
Miller, M.J., Wei, S.H., Parker, I. & Cahalan, M.D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science296, 1869–1873 (2002). CASPubMed Google Scholar
Wei, S.H., Miller, M.J., Cahalan, M.D. & Parker, I. Two-photon imaging in intact lymphoid tissue. Adv. Exp. Med. Biol.512, 203–208 (2002). PubMed Google Scholar
Miller, M.J., Wei, S.H., Cahalan, M.D. & Parker, I. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc. Natl. Acad. Sci. USA100, 2604–2609 (2003). CASPubMedPubMed Central Google Scholar
Acuto, O. T cell–dendritic cell interaction in vivo: random encounters favor development of long-lasting ties. Science STKE2003, PE28 (2003). Google Scholar
Squirrell, J.M., Wokosin, D.L., White, J.G. & Bavister, B.D. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat. Biotechnol.17, 763–767 (1999). CASPubMedPubMed Central Google Scholar
Gryczynski, I., Szmacinski, H. & Lakowicz, J.R. On the possibility of calcium imaging using Indo-1 with three-photon excitation. Photochem. Photobiol.62, 804–808 (1995). CASPubMed Google Scholar
Lakowicz, J.R. et al. Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAPI and Hoechst 33342 using three-photon excitation. Biophys. J.72, 567–578 (1997). CASPubMedPubMed Central Google Scholar
Maiti, S., Shear, J.B., Williams, R.M., Zipfel, W.R. & Webb, W.W. Measuring serotonin distribution in live cells with three-photon excitation. Science275, 530–532 (1997). CASPubMed Google Scholar
Williams, R.M., Shear, J.B., Zipfel, W.R., Maiti, S. & Webb, W.W. Mucosal mast cell secretion processes imaged using three-photon microscopy of 5-hydroxytryptamine autofluorescence. Biophys. J.76, 1835–1846 (1999). CASPubMedPubMed Central Google Scholar
Xu, C., Zipfel, W., Shear, J.B., Williams, R.M. & Webb, W.W. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc. Natl. Acad. Sci. USA93, 10763–10768 (1996). CASPubMedPubMed Central Google Scholar
Zipfel, W.R. et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl. Acad. Sci. USA100, 7075–7080 (2003). CASPubMedPubMed Central Google Scholar
Freund, I. & Deutsch, M. 2nd-harmonic microscopy of biological tissue. Opt. Lett.11, 94–96 (1986). CASPubMed Google Scholar
Campagnola, P.J., Clark, H.A., Mohler, W.A., Lewis, A. & Loew, L.M. Second-harmonic imaging microscopy of living cells. J. Biomed. Opt.6, 277–286 (2001). CASPubMed Google Scholar
Mertz, J. & Moreaux, L. Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers. Opt. Commun.196, 325–330 (2001). CAS Google Scholar
Moreaux, L., Sandre, O., Charpak, S., Blanchard–Desce, M. & Mertz, J. Coherent scattering in multi-harmonic light microscopy. Biophys. J.80, 1568–1574 (2001). CASPubMedPubMed Central Google Scholar
Campagnola, P.J. et al. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J.82, 493–508 (2002). CASPubMedPubMed Central Google Scholar
Campagnola, P.J., Mohler, W. & Millard, A.E. 3-dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J.82, 175a–175a (2002). Google Scholar
Dombeck, D.A. et al. Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy. Proc. Natl. Acad. Sci. USA100, 7081–7086 (2003). CASPubMedPubMed Central Google Scholar
Zoumi, A., Yeh, A. & Tromberg, B.J. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl. Acad. Sci. USA99, 11014–11019 (2002). CASPubMedPubMed Central Google Scholar
Barad, Y., Eisenberg, H., Horowitz, M. & Silberberg, Y. Nonlinear scanning laser microscopy by third harmonic generation. Appl. Phys. Lett.70, 922–924 (1997). CAS Google Scholar
Muller, M., Squier, J., Wilson, K.R. & Brakenhoff, G.J. 3D microscopy of transparent objects using third-harmonic generation. J. Microsc.191, 266–274 (1998). CASPubMed Google Scholar
Yelin, D., Oron, D., Korkotian, E., Segal, M. & Silbergerg, Y. Third-harmonic microscopy with a titanium-sapphire laser. Appl. Phys. B–Lasers O74, S97–S101 (2002). CAS Google Scholar
Sheppard, C.J.R. & Kompfner, R. Resonant scanning optical microscope. Appl. Optics17, 2879–2882 (1978). CAS Google Scholar
Duncan, M.D., Reintjes, J. & Manuccia, T.J. Scanning coherent anti-Stokes Raman microscope. Opt. Lett.7, 350–352 (1982). CASPubMed Google Scholar
Zumbusch, A., Holtom, G.R. & Xie, X.S. Vibrational mircoscopy using coherent anti-Stokes Raman scattering (1999). Phys. Rev. Lett.82, 4014–4017 (1999). Google Scholar
Muller, M., Squier, J., De Lange, C.A. & Brakenhoff, G.J. CARS microscopy with folded BoxCARS phasematching. J. Microsc.197 (Pt 2), 150–158 (2000). PubMed Google Scholar
Piston, D.W., Summers, R.G., Knobel, S.M. & Morrill, J.B. Characterization of involution during sea urchin gastrulation using two-photon excited photorelease and confocal microscopy. Microsc. Microanal.4, 404–414 (1998). CASPubMed Google Scholar
Furuta, T. et al. Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis. Proc. Natl. Acad. Sci. USA96, 1193–1200 (1999). CASPubMedPubMed Central Google Scholar
Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci.4, 1086–1092 (2001). CASPubMedPubMed Central Google Scholar
Echevarria, W., Leite, M.F., Guerra, M.T., Zipfel, W.R. & Nathanson, M.H. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nat. Cell. Biol.5, 440–446 (2003). CASPubMedPubMed Central Google Scholar
Berland, K.M., So, P.T. & Gratton, E. Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys. J.68, 694–701 (1995). CASPubMedPubMed Central Google Scholar
Schwille, P., Haupts, U., Maiti, S. & Webb, W.W. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys. J.77, 2251–2265 (1999). CASPubMedPubMed Central Google Scholar
Brown, E.B., Wu, E.S., Zipfel, W. & Webb, W.W. Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. Biophys. J.77, 2837–2849 (1999). CASPubMedPubMed Central Google Scholar
Zipfel, W.R. & Webb, W.W. In vivo diffusion measurements using multiphoton-excited fluorescence photobleaching recovery (MPFPR) and fluorescence correlation spectroscopy (MPFCS) in Methods in Cellular Imaging (ed. Periasamy, A.) 345–376 (Oxford University Press, Oxford, UK, 2001). Google Scholar
Stroh, M., Zipfel, W.R., Williams, R.M., Webb, W.W. & Saltzman, W.M. Diffusion of nerve growth factor in rat striatum as determined by multiphoton microscopy. Biophys. J.85, 581–588 (2003). CASPubMedPubMed Central Google Scholar
Heinze, K.G., Koltermann, A. & Schwille, P. Simultaneous two-photon excitation of distinct labels for dual-color fluorescence cross correlation analysis. Proc. Natl. Acad. Sci. USA97, 10377–10382 (2000). CASPubMedPubMed Central Google Scholar
Tirlapur, U.K. & Konig, K. Targeted transfection by femtosecond laser. Nature418, 290–291 (2002). CASPubMed Google Scholar
Konig, K., Riemann, I. & Fritzsche, W. Nanodissection of human chromosomes with near-infrared femtosecond laser pulses. Opt. Lett.26, 819–821 (2001). CASPubMed Google Scholar
Göppert-Mayer, M. Uber elementarakte mit zwei quantensprüngen. Ann. Phys.9, 273–294 (1931). Google Scholar
Xu, C. & Webb, W.W. Multiphoton excitation of molecular fluorophores and nonlinear laser microscopy in Topics in Fluorescence Spectroscopy: Volume 5: Nonlinear and Two-Photon-Induced Fluorescence. (ed. Lakowicz, J.) 471–540 (Plenum Press, New York, 1997). Google Scholar
Xu, C. & Webb, W.W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 nm to 1050 nm. J. Opt. Soc. Am. B13, 481–491 (1996). CAS Google Scholar
Steinfeld, J.I. Molecules and Radiation. (MIT Press, Cambridge, MA, 1989). Google Scholar
Huang, S., Heikal, A.A. & Webb, W.W. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys. J.82, 2811–2825 (2002). CASPubMedPubMed Central Google Scholar
Piston, D.W., Masters, B.R. & Webb, W.W. Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy. J. Microsc.178 (Pt 1), 20–27 (1995). CASPubMed Google Scholar
Wong, B.J., Wallace, V., Coleno, M., Benton, H.P. & Tromberg, B.J. Two-photon excitation laser scanning microscopy of human, porcine, and rabbit nasal septal cartilage. Tissue Eng.7, 599–606 (2001). CASPubMed Google Scholar
Noda, M. et al. Switch to anaerobic glucose metabolism with NADH accumulation in the beta-cell model of mitochondrial diabetes. Characteristics of betaHC9 cells deficient in mitochondrial DNA transcription. J. Biol. Chem.277, 41817–41826 (2002). CASPubMed Google Scholar
Zhang, Q., Piston, D.W. & Goodman, R.H. Regulation of corepressor function by nuclear NADH. Science295, 1895–1897 (2002). CASPubMed Google Scholar
Larson, D.R. et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science300, 1434–1436 (2003). CASPubMed Google Scholar
Albota, M. et al. Design of organic molecules with large two-photon absorption cross sections. Science281, 1653–1656 (1998). CASPubMed Google Scholar
Wang, X.M. et al. Synthesis of new symmetrically substituted stilbenes with large multi-photon absorption cross section and strong two-photon–induced blue fluorescence. Bull. Chem. Soc. Jpn74, 1977–1982 (2001). CAS Google Scholar
Zhou, X. et al. One- and two-photon absorption properties of novel multi-branched molecules. Phys. Chem. Chem. Phys.4, 4346–4352 (2002). CAS Google Scholar
Heikal, A.A., Hess, S.T. & Webb, W.W. Multiphoton molecular spectroscopy and excited-state dynamics of enhanced green fluorescent protein (EGFP): acid-base specificity. Chem. Phys.274, 37–55 (2001). CAS Google Scholar
Blab, G.A., Lommerse, P.H.M., Cognet, L., Harms, G.S. & Schmidt, T. Two-photon excitation action cross-sections of the autofluorescent proteins. Chem. Phys. Lett.350, 71–77 (2001). CAS Google Scholar
Hanson, G.T. et al. Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application. Biochemistry41, 15477–15488 (2002). CASPubMed Google Scholar
Tsai, P.S. et al. All-optical histology using ultrashort laser pulses. Neuron39, 27–41 (2003). CASPubMed Google Scholar
Mainen, Z.F. et al. Two-photon imaging in living brain slices. Methods18, 231–239, (1999). CASPubMed Google Scholar
Shi, S.H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science284, 1811–1816 (1999). CASPubMed Google Scholar
D'Apuzzo, M., Mandolesi, G., Reis, G. & Schuman, E.M. Abundant GFP expression and LTP in hippocampal acute slices by in vivo injection of Sindbis virus. J. Neurophysiol.86, 1037–1042 (2001). CASPubMed Google Scholar
Potter, S.M. et al. Structure and emergence of specific olfactory glomeruli in the mouse. J. Neurosci.21, 9713–9723 (2001). CASPubMedPubMed Central Google Scholar
Strome, S. et al. Spindle dynamics and the role of gamma-tubulin in early Caenorhabditis elegans embryos. Mol. Biol. Cell12, 1751–1764 (2001). CASPubMedPubMed Central Google Scholar
Ahmed, F. et al. GFP expression in the mammary gland for imaging of mammary tumor cells in transgenic mice. Cancer Res.62, 7166–7169 (2002). CASPubMed Google Scholar
Lawson, N.D. & Weinstein, B.M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol.248, 307–318 (2002). CASPubMed Google Scholar
Bestvater, F. et al. Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. J. Microsc.208, 108–115 (2002). CASPubMed Google Scholar
Dickinson, M.E., Simbuerger, E., Zimmermann, B., Waters, C.W. & Fraser, S.E. Multiphoton excitation spectra in biological samples. J. Biomed. Opt.8, 329–338 (2003). PubMed Google Scholar
Periasamy, A. Fluorescence resonance energy transfer microscopy: a mini review. J. Biomed. Opt.6, 287–291 (2001). CASPubMed Google Scholar
Majoul, I., Straub, M., Duden, R., Hell, S.W. & Soling, H.D. Fluorescence resonance energy transfer analysis of protein-protein interactions in single living cells by multifocal multiphoton microscopy. J. Biotechnol.82, 267–277 (2002). CASPubMed Google Scholar
Bacskai, B.J., Skoch, J., Hickey, G.A., Allen, R. & Hyman, B.T. Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques. J. Biomed. Opt.8, 368–375 (2003). CASPubMed Google Scholar
Gu, M. & Sheppard, C.J.R. Comparison of three-dimensional imaging properties between two-photon and single-photon fluorescence microscopy. J. Microsc.177, 128–137 (1995). Google Scholar
Centonze, V.E. & White, J.G. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys. J.75, 2015–2024 (1998). CASPubMedPubMed Central Google Scholar
Periasamy, A., Skoglund, P., Noakes, C. & Keller, R. An evaluation of two-photon excitation versus confocal and digital deconvolution fluorescence microscopy imaging in Xenopus morphogenesis. Microsc. Res. Technol.47, 172–181 (1999). CAS Google Scholar
Schilders, S.P. & Gu, M. Limiting factors on image quality in imaging through turbid media under single-photon and two-photon excitation. Microsc. Microanal.6, 156–160 (2000). CASPubMed Google Scholar
Sheppard, C.J.R. & Gu, M. Image-formation in 2-photon fluorescence microscopy. Optik86, 104–106 (1990). CAS Google Scholar
Richards, B. & Wolf, E. Electromagnetic Diffraction in Optical Systems. 2. Structure of the Image Field in an Aplanatic System. Proc. R. Soc. Lon. Ser. –A253, 358–379 (1959). Google Scholar
Sheppard, C.J.R. & Matthews, H.J. Imaging in high-aperture optical systems. J. Opt. Soc. Am. A4, 1354–1360 (1987). Google Scholar
Beaurepaire, E., Oheim, M. & Mertz, J. Ultra-deep two-photon fluorescence excitation in turbid media. Opt. Commun.188, 25–29 (2001). CAS Google Scholar
Theer, P., Hasan, M.T. & Denk, W. Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt. Lett.28, 1022–1024 (2003). CASPubMed Google Scholar
Curley, P.F., Ferguson, A.I., White, J.G. & Amos, W.B. Application of a femtosecond self-sustaining mode-locked Ti:sapphire laser to the field of laser scanning confocal microscopy. Opt. Quant. Electron.24, 851–859 (1992). Google Scholar
Hockberger, P.E. et al. Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells. Proc. Natl. Acad. Sci. USA96, 6255–6260 (1999). CASPubMedPubMed Central Google Scholar
Wokosin, D.L., Squirrell, J.M., Eliceiri, K.W. & White, J.G. Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities. Rev. Sci. Instrum.74, 193–201 (2003). CASPubMed Google Scholar
Hopkins, J. & Sibbett, W. Ultrashort lasers: big payoff in a flash. Sci. Am.283, 73–79 (2000). Google Scholar
Soeller, C. & Cannell, M.B. Construction of a two-photon microscope and optimization of illumination pulse duration. Pflugers Arch.432, 555–561 (1996). CASPubMed Google Scholar
Squier, J. & Muller, M. High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging. Rev. Sci. Instrum.72, 2855–2867 (2001). CAS Google Scholar
Muller, D., Squier, J. & Brakenhoff, G.J. Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by two-photon absorption. Opt. Lett.20, 1038–1040 (1995). CASPubMed Google Scholar
Guild, J.B., Xu, C. & Webb, W.W. Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence. Appl. Optics36, 397–401 (1997). CAS Google Scholar
Muller, M., Squier, J., Wolleschensky, R., Simon, U. & Brakenhoff, G.J. Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives. J. Microsc.191, 141–150 (1998). CASPubMed Google Scholar
Majewska, A., Yiu, G. & Yuste, R. A custom-made two-photon microscope and deconvolution system. Pflugers Arch.441, 398–408 (2000). CASPubMed Google Scholar
Tsai, P.S. et al. Principles, design and construction of a two photon scanning microscope for in vitro and in vivo studies in Methods for In Vivo Optical Imaging (ed. Frostig, R.) 113–171 (CRC Press, Boca Raton, FL, 2002). Google Scholar
Iyer, V., Losavio, B.E. & Saggau, P. Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy. J. Biomed. Opt.8, 460–471 (2003). PubMed Google Scholar
Pawley, J.B. Handbook of Biological Confocal Microscopy, edn 2. (Plenum Press, New York, 1995). Google Scholar
Fan, G.Y. et al. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. Biophys. J.76, 2412–2420 (1999). CASPubMedPubMed Central Google Scholar
Nguyen, Q.T., Callamaras, N., Hsieh, C. & Parker, I. Construction of a two-photon microscope for video-rate Ca(2+) imaging. Cell Calcium30, 383–393 (2001). CASPubMed Google Scholar
Gauderon, R., Lukins, P.B. & Sheppard, C.J. Effect of a confocal pinhole in two-photon microscopy. Microsc. Res. Technol.47, 210–214 (1999). CAS Google Scholar
Oheim, M., Beaurepaire, E., Chaigneau, E., Mertz, J. & Charpak, S. Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J. Neurosci. Methods111, 29–37 (2001). CASPubMed Google Scholar
Egner, A., Jakobs, S. & Hell, S.W. Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc. Natl. Acad. Sci. USA99, 3370–3375 (2002). CASPubMedPubMed Central Google Scholar
Tan, Y.P., Llano, I., Hopt, A., Wurriehausen, F. & Neher, E. Fast scanning and efficient photodetection in a simple two-photon microscope. J. Neurosci. Methods92, 123–135 (1999). CASPubMed Google Scholar
Gratton, E., Breusegem, S., Sutin, J., Ruan, Q. & Barry, N. Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods. J. Biomed. Opt.8, 381–390 (2003). PubMed Google Scholar
Moreaux, L., Sandre, O. & Mertz, J. Membrane imaging by second-harmonic generation microscopy. J. Opt. Soc. Am. B17, 1685–1694 (2000). CAS Google Scholar
Peleg, G., Lewis, A., Linial, M. & Loew, L.M. Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites. Proc. Natl. Acad. Sci. USA96, 6700–6704 (1999). CASPubMedPubMed Central Google Scholar
Moreaux, L., Sandre, O., Blanchard–Desce, M. & Mertz, J. Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy. Opt. Lett.25, 320–322 (2000). CASPubMed Google Scholar
Millard, A.C., Jin, L., Lewis, A. & Loew, L.M. Direct measurement of the voltage sensitivity of second-harmonic generation from a membrane dye in patch-clamped cells. Opt. Lett.28, 1221–1223 (2003). CASPubMed Google Scholar
Mohler, W., Millard, A.C. & Campagnola, P.J. Second harmonic generation imaging of endogenous structural proteins. Methods29, 97–109 (2003). CASPubMed Google Scholar
Konig, K., So, P.T., Mantulin, W.W., Tromberg, B.J. & Gratton, E. Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress. J. Microsc.183 (Pt 3), 197–204 (1996). CASPubMed Google Scholar
Koester, H.J., Baur, D., Uhl, R. & Hell, S.W. Ca2+ fluorescence imaging with pico– and femtosecond two-photon excitation: signal and photodamage. Biophys. J.77, 2226–2236 (1999). CASPubMedPubMed Central Google Scholar
Hopt, A. & Neher, E. Highly nonlinear photodamage in two-photon fluorescence microscopy. Biophys. J.80, 2029–2036 (2001). CASPubMedPubMed Central Google Scholar
Dittrich, P.S. & Schwille, P. Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation. Appl. Phys. B. Lasers O73, 829–837 (2001). CAS Google Scholar
Patterson, G.H. & Piston, D.W. Photobleaching in two-photon excitation microscopy. Biophys. J.78, 2159–2162 (2000). CASPubMedPubMed Central Google Scholar
Neil, M.A. et al. Adaptive aberration correction in a two-photon microscope. J. Microsc.200 (Pt 2), 105–108 (2000). PubMed Google Scholar
Booth, M.J., Neil, M.A. & Wilson, T. New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy. J. Opt. Soc. Am. A Opt. Image Sci. Vis.19, 2112–2120 (2002). PubMed Google Scholar
Marsh, P.N., Burns, D. & Girkin, J.M. Practical implementation of adaptive optics in multiphoton microscopy. Opt. Express11, 1123–1130 (2003). CASPubMed Google Scholar
Brunner, F. et al. Diode-pumped femtosecond Yb:KGd(WO/sub 4/)/sub 2/ laser with 1.1-W average power. Opt. Lett.25, 1119–1121 (2000). CASPubMed Google Scholar
Ilday, F.O., Lim, H., Buckley, J.R. & Wise, F.W. Practical all-fiber source of high-power, 120-fs pulses at 1 micron. Opt. Lett.28, 1362–1364 (2003). CASPubMed Google Scholar
Bird, D. & Gu, M. Two-photon fluorescence endoscopy with a mirco-optic scanning head. Opt. Lett.28, 1552–1554 (2003). PubMed Google Scholar
Ouzounov, D.G. et al. Delivery of nanojoule femtosecond pulses through large-core microstructured fibers. Opt. Lett.27, 1513–1515 (2002). CASPubMed Google Scholar
Pastirk, I., Dela Cruz, J.M., Walowicz, K.A., Lozovoy, V.V. & Dantus, M. Selective two-photon microscopy with shaped femtosecond pulses. Opt. Express11, 1695–1701 (2003). PubMed Google Scholar
Williams, R.M. & Webb, W.W. Single granule pH cycling in antigen-induced mast cell secretion. J. Cell Sci.113 (Pt 21), 3839–3850 (2000). CASPubMed Google Scholar
Kloppenburg, P., Zipfel, W.R., Webb, W.W. & Harris–Warrick, R.M. Highly localized Ca(2+) accumulation revealed by multiphoton microscopy in an identified motoneuron and its modulation by dopamine. J. Neurosci.20, 2523–2533 (2000). CASPubMedPubMed Central Google Scholar
Kleinfeld, D., Mitra, P.P., Helmchen, F. & Denk, W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc. Natl. Acad. Sci. USA95, 15741–15746 (1998). CASPubMedPubMed Central Google Scholar