Nonlinear magic: multiphoton microscopy in the biosciences (original) (raw)

References

  1. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).
    CAS PubMed Google Scholar
  2. Yuste, R. & Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684 (1995).
    CAS PubMed Google Scholar
  3. Mainen, Z.F., Malinow, R. & Svoboda, K. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 399, 151–155 (1999).
    CAS PubMed Google Scholar
  4. Rose, C.R., Kovalchuk, Y., Eilers, J. & Konnerth, A. Two-photon Na+ imaging in spines and fine dendrites of central neurons. Pflugers Arch. 439, 201–207 (1999).
    CAS PubMed Google Scholar
  5. Tan, Y.P. & Llano, I. Modulation by K+ channels of action potential-evoked intracellular Ca2+ concentration rises in rat cerebellar basket cell axons. J. Physiol. 520 Pt 1, 65–78 (1999).
    CAS PubMed PubMed Central Google Scholar
  6. Cox, C.L., Denk, W., Tank, D.W. & Svoboda, K. Action potentials reliably invade axonal arbors of rat neocortical neurons. Proc. Natl. Acad. Sci. USA 97, 9724–9728 (2000).
    CAS PubMed PubMed Central Google Scholar
  7. Majewska, A., Tashiro, A. & Yuste, R. Regulation of spine calcium dynamics by rapid spine motility. J. Neurosci. 20, 8262–8268 (2000).
    CAS PubMed PubMed Central Google Scholar
  8. Oertner, T.G. Functional imaging of single synapses in brain slices. Exp. Physiol. 87, 733–736 (2002).
    PubMed Google Scholar
  9. Frick, A., Magee, J., Koester, H.J., Migliore, M. & Johnston, D. Normalization of Ca2+ signals by small oblique dendrites of CA1 pyramidal neurons. J. Neurosci. 23, 3243–3250 (2003).
    CAS PubMed PubMed Central Google Scholar
  10. Lendvai, B., Zelles, T., Rozsa, B. & Vizi, E.S. A vinca alkaloid enhances morphological dynamics of dendritic spines of neocortical layer 2/3 pyramidal cells. Brain Res. Bull. 59, 257–260 (2003).
    CAS PubMed Google Scholar
  11. Sabatini, B.L. & Svoboda, K. Analysis of calcium channels in single spines using optical fluctuation analysis. Nature 408, 589–593 (2000).
    CAS PubMed Google Scholar
  12. Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D.W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997).
    CAS PubMed Google Scholar
  13. Helmchen, F., Svoboda, K., Denk, W. & Tank, D.W. In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat. Neurosci. 2, 989–996 (1999).
    CAS PubMed Google Scholar
  14. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).
    CAS PubMed PubMed Central Google Scholar
  15. Helmchen, F. & Waters, J. Ca(2+) imaging in the mammalian brain in vivo. Eur. J. Pharmacol. 447, 119–129 (2002).
    CAS PubMed Google Scholar
  16. Svoboda, K., Tank, D.W. & Denk, W. Direct measurement of coupling between dendritic spines and shafts. Science 272, 716–719 (1996).
    CAS PubMed Google Scholar
  17. Ladewig, T. et al. Spatial profiles of store-dependent calcium release in motoneurones of the nucleus hypoglossus from newborn mouse. J. Physiol. 547, 775–787 (2003).
    CAS PubMed PubMed Central Google Scholar
  18. Christie, R.H. et al. Growth arrest of individual senile plaques in a model of Alzheimer's disease observed by in vivo multiphoton microscopy. J. Neurosci. 21, 858–864 (2001).
    CAS PubMed PubMed Central Google Scholar
  19. Bacskai, B.J. et al. Non-Fc-mediated mechanisms are involved in clearance of amyloid-beta in vivo by immunotherapy. J. Neurosci. 22, 7873–7878 (2002).
    CAS PubMed PubMed Central Google Scholar
  20. D'Amore, J.D. et al. In vivo multiphoton imaging of a transgenic mouse model of Alzheimer disease reveals marked thioflavine-S-associated alterations in neurite trajectories. J. Neuropathol. Exp. Neurol. 62, 137–145 (2003).
    CAS PubMed Google Scholar
  21. Bacskai, B.J. et al. Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat. Med. 7, 369–372 (2001).
    CAS PubMed Google Scholar
  22. Brown, E.B. et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat. Med. 7, 864–868 (2001).
    CAS PubMed Google Scholar
  23. McDonald, D.M. & Choyke, P.L. Imaging of angiogenesis: from microscope to clinic. Nat. Med. 9, 713–725 (2003).
    CAS PubMed Google Scholar
  24. Wang, W. et al. Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res. 62, 6278–6288 (2002).
    CAS PubMed Google Scholar
  25. Wolf, K. et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277 (2003).
    CAS PubMed PubMed Central Google Scholar
  26. Cahalan, M.D., Parker, I., Wei, S.H. & Miller, M.J. Two-photon tissue imaging: seeing the immune system in a fresh light. Nat. Rev. Immunol. 2, 872–880 (2002).
    CAS PubMed PubMed Central Google Scholar
  27. Miller, M.J., Wei, S.H., Parker, I. & Cahalan, M.D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).
    CAS PubMed Google Scholar
  28. Wei, S.H., Miller, M.J., Cahalan, M.D. & Parker, I. Two-photon imaging in intact lymphoid tissue. Adv. Exp. Med. Biol. 512, 203–208 (2002).
    PubMed Google Scholar
  29. Miller, M.J., Wei, S.H., Cahalan, M.D. & Parker, I. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc. Natl. Acad. Sci. USA 100, 2604–2609 (2003).
    CAS PubMed PubMed Central Google Scholar
  30. Acuto, O. T cell–dendritic cell interaction in vivo: random encounters favor development of long-lasting ties. Science STKE 2003, PE28 (2003).
    Google Scholar
  31. Squirrell, J.M., Wokosin, D.L., White, J.G. & Bavister, B.D. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat. Biotechnol. 17, 763–767 (1999).
    CAS PubMed PubMed Central Google Scholar
  32. Gryczynski, I., Szmacinski, H. & Lakowicz, J.R. On the possibility of calcium imaging using Indo-1 with three-photon excitation. Photochem. Photobiol. 62, 804–808 (1995).
    CAS PubMed Google Scholar
  33. Lakowicz, J.R. et al. Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAPI and Hoechst 33342 using three-photon excitation. Biophys. J. 72, 567–578 (1997).
    CAS PubMed PubMed Central Google Scholar
  34. Maiti, S., Shear, J.B., Williams, R.M., Zipfel, W.R. & Webb, W.W. Measuring serotonin distribution in live cells with three-photon excitation. Science 275, 530–532 (1997).
    CAS PubMed Google Scholar
  35. Williams, R.M., Shear, J.B., Zipfel, W.R., Maiti, S. & Webb, W.W. Mucosal mast cell secretion processes imaged using three-photon microscopy of 5-hydroxytryptamine autofluorescence. Biophys. J. 76, 1835–1846 (1999).
    CAS PubMed PubMed Central Google Scholar
  36. Xu, C., Zipfel, W., Shear, J.B., Williams, R.M. & Webb, W.W. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc. Natl. Acad. Sci. USA 93, 10763–10768 (1996).
    CAS PubMed PubMed Central Google Scholar
  37. Zipfel, W.R. et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).
    CAS PubMed PubMed Central Google Scholar
  38. Freund, I. & Deutsch, M. 2nd-harmonic microscopy of biological tissue. Opt. Lett. 11, 94–96 (1986).
    CAS PubMed Google Scholar
  39. Campagnola, P.J., Clark, H.A., Mohler, W.A., Lewis, A. & Loew, L.M. Second-harmonic imaging microscopy of living cells. J. Biomed. Opt. 6, 277–286 (2001).
    CAS PubMed Google Scholar
  40. Mertz, J. & Moreaux, L. Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers. Opt. Commun. 196, 325–330 (2001).
    CAS Google Scholar
  41. Moreaux, L., Sandre, O., Charpak, S., Blanchard–Desce, M. & Mertz, J. Coherent scattering in multi-harmonic light microscopy. Biophys. J. 80, 1568–1574 (2001).
    CAS PubMed PubMed Central Google Scholar
  42. Campagnola, P.J. et al. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J. 82, 493–508 (2002).
    CAS PubMed PubMed Central Google Scholar
  43. Campagnola, P.J., Mohler, W. & Millard, A.E. 3-dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J. 82, 175a–175a (2002).
    Google Scholar
  44. Dombeck, D.A. et al. Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy. Proc. Natl. Acad. Sci. USA 100, 7081–7086 (2003).
    CAS PubMed PubMed Central Google Scholar
  45. Zoumi, A., Yeh, A. & Tromberg, B.J. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl. Acad. Sci. USA 99, 11014–11019 (2002).
    CAS PubMed PubMed Central Google Scholar
  46. Barad, Y., Eisenberg, H., Horowitz, M. & Silberberg, Y. Nonlinear scanning laser microscopy by third harmonic generation. Appl. Phys. Lett. 70, 922–924 (1997).
    CAS Google Scholar
  47. Muller, M., Squier, J., Wilson, K.R. & Brakenhoff, G.J. 3D microscopy of transparent objects using third-harmonic generation. J. Microsc. 191, 266–274 (1998).
    CAS PubMed Google Scholar
  48. Yelin, D., Oron, D., Korkotian, E., Segal, M. & Silbergerg, Y. Third-harmonic microscopy with a titanium-sapphire laser. Appl. Phys. B–Lasers O 74, S97–S101 (2002).
    CAS Google Scholar
  49. Sheppard, C.J.R. & Kompfner, R. Resonant scanning optical microscope. Appl. Optics 17, 2879–2882 (1978).
    CAS Google Scholar
  50. Duncan, M.D., Reintjes, J. & Manuccia, T.J. Scanning coherent anti-Stokes Raman microscope. Opt. Lett. 7, 350–352 (1982).
    CAS PubMed Google Scholar
  51. Zumbusch, A., Holtom, G.R. & Xie, X.S. Vibrational mircoscopy using coherent anti-Stokes Raman scattering (1999). Phys. Rev. Lett. 82, 4014–4017 (1999).
    Google Scholar
  52. Muller, M., Squier, J., De Lange, C.A. & Brakenhoff, G.J. CARS microscopy with folded BoxCARS phasematching. J. Microsc. 197 (Pt 2), 150–158 (2000).
    PubMed Google Scholar
  53. Piston, D.W., Summers, R.G., Knobel, S.M. & Morrill, J.B. Characterization of involution during sea urchin gastrulation using two-photon excited photorelease and confocal microscopy. Microsc. Microanal. 4, 404–414 (1998).
    CAS PubMed Google Scholar
  54. Furuta, T. et al. Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis. Proc. Natl. Acad. Sci. USA 96, 1193–1200 (1999).
    CAS PubMed PubMed Central Google Scholar
  55. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086–1092 (2001).
    CAS PubMed PubMed Central Google Scholar
  56. Echevarria, W., Leite, M.F., Guerra, M.T., Zipfel, W.R. & Nathanson, M.H. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nat. Cell. Biol. 5, 440–446 (2003).
    CAS PubMed PubMed Central Google Scholar
  57. Berland, K.M., So, P.T. & Gratton, E. Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys. J. 68, 694–701 (1995).
    CAS PubMed PubMed Central Google Scholar
  58. Schwille, P., Haupts, U., Maiti, S. & Webb, W.W. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys. J. 77, 2251–2265 (1999).
    CAS PubMed PubMed Central Google Scholar
  59. Brown, E.B., Wu, E.S., Zipfel, W. & Webb, W.W. Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. Biophys. J. 77, 2837–2849 (1999).
    CAS PubMed PubMed Central Google Scholar
  60. Zipfel, W.R. & Webb, W.W. In vivo diffusion measurements using multiphoton-excited fluorescence photobleaching recovery (MPFPR) and fluorescence correlation spectroscopy (MPFCS) in Methods in Cellular Imaging (ed. Periasamy, A.) 345–376 (Oxford University Press, Oxford, UK, 2001).
    Google Scholar
  61. Stroh, M., Zipfel, W.R., Williams, R.M., Webb, W.W. & Saltzman, W.M. Diffusion of nerve growth factor in rat striatum as determined by multiphoton microscopy. Biophys. J. 85, 581–588 (2003).
    CAS PubMed PubMed Central Google Scholar
  62. Heinze, K.G., Koltermann, A. & Schwille, P. Simultaneous two-photon excitation of distinct labels for dual-color fluorescence cross correlation analysis. Proc. Natl. Acad. Sci. USA 97, 10377–10382 (2000).
    CAS PubMed PubMed Central Google Scholar
  63. Tirlapur, U.K. & Konig, K. Targeted transfection by femtosecond laser. Nature 418, 290–291 (2002).
    CAS PubMed Google Scholar
  64. Konig, K., Riemann, I. & Fritzsche, W. Nanodissection of human chromosomes with near-infrared femtosecond laser pulses. Opt. Lett. 26, 819–821 (2001).
    CAS PubMed Google Scholar
  65. Göppert-Mayer, M. Uber elementarakte mit zwei quantensprüngen. Ann. Phys. 9, 273–294 (1931).
    Google Scholar
  66. Xu, C. & Webb, W.W. Multiphoton excitation of molecular fluorophores and nonlinear laser microscopy in Topics in Fluorescence Spectroscopy: Volume 5: Nonlinear and Two-Photon-Induced Fluorescence. (ed. Lakowicz, J.) 471–540 (Plenum Press, New York, 1997).
    Google Scholar
  67. Xu, C. & Webb, W.W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 nm to 1050 nm. J. Opt. Soc. Am. B 13, 481–491 (1996).
    CAS Google Scholar
  68. Steinfeld, J.I. Molecules and Radiation. (MIT Press, Cambridge, MA, 1989).
    Google Scholar
  69. Huang, S., Heikal, A.A. & Webb, W.W. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys. J. 82, 2811–2825 (2002).
    CAS PubMed PubMed Central Google Scholar
  70. Piston, D.W., Masters, B.R. & Webb, W.W. Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy. J. Microsc. 178 (Pt 1), 20–27 (1995).
    CAS PubMed Google Scholar
  71. Wong, B.J., Wallace, V., Coleno, M., Benton, H.P. & Tromberg, B.J. Two-photon excitation laser scanning microscopy of human, porcine, and rabbit nasal septal cartilage. Tissue Eng. 7, 599–606 (2001).
    CAS PubMed Google Scholar
  72. Noda, M. et al. Switch to anaerobic glucose metabolism with NADH accumulation in the beta-cell model of mitochondrial diabetes. Characteristics of betaHC9 cells deficient in mitochondrial DNA transcription. J. Biol. Chem. 277, 41817–41826 (2002).
    CAS PubMed Google Scholar
  73. Zhang, Q., Piston, D.W. & Goodman, R.H. Regulation of corepressor function by nuclear NADH. Science 295, 1895–1897 (2002).
    CAS PubMed Google Scholar
  74. Larson, D.R. et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436 (2003).
    CAS PubMed Google Scholar
  75. Albota, M. et al. Design of organic molecules with large two-photon absorption cross sections. Science 281, 1653–1656 (1998).
    CAS PubMed Google Scholar
  76. Wang, X.M. et al. Synthesis of new symmetrically substituted stilbenes with large multi-photon absorption cross section and strong two-photon–induced blue fluorescence. Bull. Chem. Soc. Jpn 74, 1977–1982 (2001).
    CAS Google Scholar
  77. Zhou, X. et al. One- and two-photon absorption properties of novel multi-branched molecules. Phys. Chem. Chem. Phys. 4, 4346–4352 (2002).
    CAS Google Scholar
  78. Heikal, A.A., Hess, S.T. & Webb, W.W. Multiphoton molecular spectroscopy and excited-state dynamics of enhanced green fluorescent protein (EGFP): acid-base specificity. Chem. Phys. 274, 37–55 (2001).
    CAS Google Scholar
  79. Blab, G.A., Lommerse, P.H.M., Cognet, L., Harms, G.S. & Schmidt, T. Two-photon excitation action cross-sections of the autofluorescent proteins. Chem. Phys. Lett. 350, 71–77 (2001).
    CAS Google Scholar
  80. Hanson, G.T. et al. Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application. Biochemistry 41, 15477–15488 (2002).
    CAS PubMed Google Scholar
  81. Tsai, P.S. et al. All-optical histology using ultrashort laser pulses. Neuron 39, 27–41 (2003).
    CAS PubMed Google Scholar
  82. Mainen, Z.F. et al. Two-photon imaging in living brain slices. Methods 18, 231–239, (1999).
    CAS PubMed Google Scholar
  83. Shi, S.H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).
    CAS PubMed Google Scholar
  84. D'Apuzzo, M., Mandolesi, G., Reis, G. & Schuman, E.M. Abundant GFP expression and LTP in hippocampal acute slices by in vivo injection of Sindbis virus. J. Neurophysiol. 86, 1037–1042 (2001).
    CAS PubMed Google Scholar
  85. Potter, S.M. et al. Structure and emergence of specific olfactory glomeruli in the mouse. J. Neurosci. 21, 9713–9723 (2001).
    CAS PubMed PubMed Central Google Scholar
  86. Strome, S. et al. Spindle dynamics and the role of gamma-tubulin in early Caenorhabditis elegans embryos. Mol. Biol. Cell 12, 1751–1764 (2001).
    CAS PubMed PubMed Central Google Scholar
  87. Ahmed, F. et al. GFP expression in the mammary gland for imaging of mammary tumor cells in transgenic mice. Cancer Res. 62, 7166–7169 (2002).
    CAS PubMed Google Scholar
  88. Lawson, N.D. & Weinstein, B.M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307–318 (2002).
    CAS PubMed Google Scholar
  89. Bestvater, F. et al. Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. J. Microsc. 208, 108–115 (2002).
    CAS PubMed Google Scholar
  90. Dickinson, M.E., Simbuerger, E., Zimmermann, B., Waters, C.W. & Fraser, S.E. Multiphoton excitation spectra in biological samples. J. Biomed. Opt. 8, 329–338 (2003).
    PubMed Google Scholar
  91. Periasamy, A. Fluorescence resonance energy transfer microscopy: a mini review. J. Biomed. Opt. 6, 287–291 (2001).
    CAS PubMed Google Scholar
  92. Majoul, I., Straub, M., Duden, R., Hell, S.W. & Soling, H.D. Fluorescence resonance energy transfer analysis of protein-protein interactions in single living cells by multifocal multiphoton microscopy. J. Biotechnol. 82, 267–277 (2002).
    CAS PubMed Google Scholar
  93. Bacskai, B.J., Skoch, J., Hickey, G.A., Allen, R. & Hyman, B.T. Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques. J. Biomed. Opt. 8, 368–375 (2003).
    CAS PubMed Google Scholar
  94. Gu, M. & Sheppard, C.J.R. Comparison of three-dimensional imaging properties between two-photon and single-photon fluorescence microscopy. J. Microsc. 177, 128–137 (1995).
    Google Scholar
  95. Centonze, V.E. & White, J.G. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys. J. 75, 2015–2024 (1998).
    CAS PubMed PubMed Central Google Scholar
  96. Periasamy, A., Skoglund, P., Noakes, C. & Keller, R. An evaluation of two-photon excitation versus confocal and digital deconvolution fluorescence microscopy imaging in Xenopus morphogenesis. Microsc. Res. Technol. 47, 172–181 (1999).
    CAS Google Scholar
  97. Schilders, S.P. & Gu, M. Limiting factors on image quality in imaging through turbid media under single-photon and two-photon excitation. Microsc. Microanal. 6, 156–160 (2000).
    CAS PubMed Google Scholar
  98. Sheppard, C.J.R. & Gu, M. Image-formation in 2-photon fluorescence microscopy. Optik 86, 104–106 (1990).
    CAS Google Scholar
  99. Richards, B. & Wolf, E. Electromagnetic Diffraction in Optical Systems. 2. Structure of the Image Field in an Aplanatic System. Proc. R. Soc. Lon. Ser. –A 253, 358–379 (1959).
    Google Scholar
  100. Sheppard, C.J.R. & Matthews, H.J. Imaging in high-aperture optical systems. J. Opt. Soc. Am. A 4, 1354–1360 (1987).
    Google Scholar
  101. Beaurepaire, E., Oheim, M. & Mertz, J. Ultra-deep two-photon fluorescence excitation in turbid media. Opt. Commun. 188, 25–29 (2001).
    CAS Google Scholar
  102. Theer, P., Hasan, M.T. & Denk, W. Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt. Lett. 28, 1022–1024 (2003).
    CAS PubMed Google Scholar
  103. Curley, P.F., Ferguson, A.I., White, J.G. & Amos, W.B. Application of a femtosecond self-sustaining mode-locked Ti:sapphire laser to the field of laser scanning confocal microscopy. Opt. Quant. Electron. 24, 851–859 (1992).
    Google Scholar
  104. Hockberger, P.E. et al. Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells. Proc. Natl. Acad. Sci. USA 96, 6255–6260 (1999).
    CAS PubMed PubMed Central Google Scholar
  105. Wokosin, D.L., Squirrell, J.M., Eliceiri, K.W. & White, J.G. Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities. Rev. Sci. Instrum. 74, 193–201 (2003).
    CAS PubMed Google Scholar
  106. Hopkins, J. & Sibbett, W. Ultrashort lasers: big payoff in a flash. Sci. Am. 283, 73–79 (2000).
    Google Scholar
  107. Soeller, C. & Cannell, M.B. Construction of a two-photon microscope and optimization of illumination pulse duration. Pflugers Arch. 432, 555–561 (1996).
    CAS PubMed Google Scholar
  108. Squier, J. & Muller, M. High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging. Rev. Sci. Instrum. 72, 2855–2867 (2001).
    CAS Google Scholar
  109. Muller, D., Squier, J. & Brakenhoff, G.J. Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by two-photon absorption. Opt. Lett. 20, 1038–1040 (1995).
    CAS PubMed Google Scholar
  110. Guild, J.B., Xu, C. & Webb, W.W. Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence. Appl. Optics 36, 397–401 (1997).
    CAS Google Scholar
  111. Muller, M., Squier, J., Wolleschensky, R., Simon, U. & Brakenhoff, G.J. Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives. J. Microsc. 191, 141–150 (1998).
    CAS PubMed Google Scholar
  112. Majewska, A., Yiu, G. & Yuste, R. A custom-made two-photon microscope and deconvolution system. Pflugers Arch. 441, 398–408 (2000).
    CAS PubMed Google Scholar
  113. Tsai, P.S. et al. Principles, design and construction of a two photon scanning microscope for in vitro and in vivo studies in Methods for In Vivo Optical Imaging (ed. Frostig, R.) 113–171 (CRC Press, Boca Raton, FL, 2002).
    Google Scholar
  114. Iyer, V., Losavio, B.E. & Saggau, P. Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy. J. Biomed. Opt. 8, 460–471 (2003).
    PubMed Google Scholar
  115. Pawley, J.B. Handbook of Biological Confocal Microscopy, edn 2. (Plenum Press, New York, 1995).
    Google Scholar
  116. Fan, G.Y. et al. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. Biophys. J. 76, 2412–2420 (1999).
    CAS PubMed PubMed Central Google Scholar
  117. Nguyen, Q.T., Callamaras, N., Hsieh, C. & Parker, I. Construction of a two-photon microscope for video-rate Ca(2+) imaging. Cell Calcium 30, 383–393 (2001).
    CAS PubMed Google Scholar
  118. Gauderon, R., Lukins, P.B. & Sheppard, C.J. Effect of a confocal pinhole in two-photon microscopy. Microsc. Res. Technol. 47, 210–214 (1999).
    CAS Google Scholar
  119. Oheim, M., Beaurepaire, E., Chaigneau, E., Mertz, J. & Charpak, S. Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J. Neurosci. Methods 111, 29–37 (2001).
    CAS PubMed Google Scholar
  120. Egner, A., Jakobs, S. & Hell, S.W. Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc. Natl. Acad. Sci. USA 99, 3370–3375 (2002).
    CAS PubMed PubMed Central Google Scholar
  121. Tan, Y.P., Llano, I., Hopt, A., Wurriehausen, F. & Neher, E. Fast scanning and efficient photodetection in a simple two-photon microscope. J. Neurosci. Methods 92, 123–135 (1999).
    CAS PubMed Google Scholar
  122. Gratton, E., Breusegem, S., Sutin, J., Ruan, Q. & Barry, N. Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods. J. Biomed. Opt. 8, 381–390 (2003).
    PubMed Google Scholar
  123. Moreaux, L., Sandre, O. & Mertz, J. Membrane imaging by second-harmonic generation microscopy. J. Opt. Soc. Am. B 17, 1685–1694 (2000).
    CAS Google Scholar
  124. Peleg, G., Lewis, A., Linial, M. & Loew, L.M. Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites. Proc. Natl. Acad. Sci. USA 96, 6700–6704 (1999).
    CAS PubMed PubMed Central Google Scholar
  125. Moreaux, L., Sandre, O., Blanchard–Desce, M. & Mertz, J. Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy. Opt. Lett. 25, 320–322 (2000).
    CAS PubMed Google Scholar
  126. Millard, A.C., Jin, L., Lewis, A. & Loew, L.M. Direct measurement of the voltage sensitivity of second-harmonic generation from a membrane dye in patch-clamped cells. Opt. Lett. 28, 1221–1223 (2003).
    CAS PubMed Google Scholar
  127. Mohler, W., Millard, A.C. & Campagnola, P.J. Second harmonic generation imaging of endogenous structural proteins. Methods 29, 97–109 (2003).
    CAS PubMed Google Scholar
  128. Konig, K., So, P.T., Mantulin, W.W., Tromberg, B.J. & Gratton, E. Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress. J. Microsc. 183 (Pt 3), 197–204 (1996).
    CAS PubMed Google Scholar
  129. Koester, H.J., Baur, D., Uhl, R. & Hell, S.W. Ca2+ fluorescence imaging with pico– and femtosecond two-photon excitation: signal and photodamage. Biophys. J. 77, 2226–2236 (1999).
    CAS PubMed PubMed Central Google Scholar
  130. Hopt, A. & Neher, E. Highly nonlinear photodamage in two-photon fluorescence microscopy. Biophys. J. 80, 2029–2036 (2001).
    CAS PubMed PubMed Central Google Scholar
  131. Dittrich, P.S. & Schwille, P. Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation. Appl. Phys. B. Lasers O 73, 829–837 (2001).
    CAS Google Scholar
  132. Patterson, G.H. & Piston, D.W. Photobleaching in two-photon excitation microscopy. Biophys. J. 78, 2159–2162 (2000).
    CAS PubMed PubMed Central Google Scholar
  133. Neil, M.A. et al. Adaptive aberration correction in a two-photon microscope. J. Microsc. 200 (Pt 2), 105–108 (2000).
    PubMed Google Scholar
  134. Booth, M.J., Neil, M.A. & Wilson, T. New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 19, 2112–2120 (2002).
    PubMed Google Scholar
  135. Marsh, P.N., Burns, D. & Girkin, J.M. Practical implementation of adaptive optics in multiphoton microscopy. Opt. Express 11, 1123–1130 (2003).
    CAS PubMed Google Scholar
  136. Brunner, F. et al. Diode-pumped femtosecond Yb:KGd(WO/sub 4/)/sub 2/ laser with 1.1-W average power. Opt. Lett. 25, 1119–1121 (2000).
    CAS PubMed Google Scholar
  137. Ilday, F.O., Lim, H., Buckley, J.R. & Wise, F.W. Practical all-fiber source of high-power, 120-fs pulses at 1 micron. Opt. Lett. 28, 1362–1364 (2003).
    CAS PubMed Google Scholar
  138. Jung, J.C. & Schnitzer, M.J. Multiphoton endoscopy. Opt. Lett. 28, 902–904 (2003).
    PubMed Google Scholar
  139. Bird, D. & Gu, M. Two-photon fluorescence endoscopy with a mirco-optic scanning head. Opt. Lett. 28, 1552–1554 (2003).
    PubMed Google Scholar
  140. Ouzounov, D.G. et al. Delivery of nanojoule femtosecond pulses through large-core microstructured fibers. Opt. Lett. 27, 1513–1515 (2002).
    CAS PubMed Google Scholar
  141. Pastirk, I., Dela Cruz, J.M., Walowicz, K.A., Lozovoy, V.V. & Dantus, M. Selective two-photon microscopy with shaped femtosecond pulses. Opt. Express 11, 1695–1701 (2003).
    PubMed Google Scholar
  142. Williams, R.M. & Webb, W.W. Single granule pH cycling in antigen-induced mast cell secretion. J. Cell Sci. 113 (Pt 21), 3839–3850 (2000).
    CAS PubMed Google Scholar
  143. Kloppenburg, P., Zipfel, W.R., Webb, W.W. & Harris–Warrick, R.M. Highly localized Ca(2+) accumulation revealed by multiphoton microscopy in an identified motoneuron and its modulation by dopamine. J. Neurosci. 20, 2523–2533 (2000).
    CAS PubMed PubMed Central Google Scholar
  144. Kleinfeld, D., Mitra, P.P., Helmchen, F. & Denk, W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).
    CAS PubMed PubMed Central Google Scholar

Download references