Mrc1 transduces signals of DNA replication stress to activate Rad53 (original) (raw)

References

  1. Zhou, B. B. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).
    Article CAS PubMed Google Scholar
  2. Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824–1827 (2000).
    Article CAS PubMed Google Scholar
  3. Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y. & Prives, C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14, 289–300 (2000).
    CAS PubMed PubMed Central Google Scholar
  4. Chehab, N. H., Malikzay, A., Appel, M. & Halazonetis, T. D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev. 14, 278–288 (2000).
    CAS PubMed PubMed Central Google Scholar
  5. Bell, D. W. et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286, 2528–2531 (1999).
    Article CAS PubMed Google Scholar
  6. Sanchez, Y. et al. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271, 357–360 (1996).
    Article CAS PubMed Google Scholar
  7. Sun, Z., Fay, D. S., Marini, F., Foiani, M. & Stern, D. F. Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways. Genes Dev. 10, 395–406 (1996).
    Article CAS PubMed Google Scholar
  8. Lindsay, H. D. et al. S-phase-specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev. 12, 382–395 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  9. Sun, Z., Hsiao, J., Fay, D. S. & Stern, D. F. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281, 272–274 (1998).
    Article CAS PubMed Google Scholar
  10. Pellicioli, A. et al. Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO J. 18, 6561–6572 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  11. Saka, Y., Esashi, F., Matsusaka, T., Mochida, S. & Yanagida, M. Damage and replication checkpoint control in fission yeast is ensured by interactions of Crb2, a protein with BRCT motif, with Cut5 and Chk1. Genes Dev. 11, 3387–3400 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  12. Desany, B. A., Alcasabas, A. A., Bachant, J. B. & Elledge, S. J. Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev. 12, 2956–2970 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  13. Sanchez, Y. et al. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science 286, 1166–1171 (1999).
    Article CAS PubMed Google Scholar
  14. Willson, J., Wilson, S., Warr, N. & Watts, F. Z. Isolation and characterization of the Schizosaccharomyces pombe rhp9 gene: a gene required for the DNA damage checkpoint but not the replication checkpoint. Nucleic Acids Res. 25, 2138–2146 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  15. Kumagai, A. & Dunphy, G. W. Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol. Cell 6, 839–849 (2000).
    Article CAS PubMed Google Scholar
  16. Weinert, T. A. & Hartwell, L. H. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241, 317–322 (1988).
    Article CAS PubMed Google Scholar
  17. Paulovich, A. G. & Hartwell, L. H. . A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82, 841–847 (1995).
    Article CAS PubMed Google Scholar
  18. Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  19. Santocanale, C. & Diffley, J. F. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395, 615–618 (1998).
    Article CAS PubMed Google Scholar
  20. Allen, J. B., Zhou, Z., Siede, W., Friedberg, E. C. & Elledge, S. J. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev. 8, 2401–2415 (1994).
    Article CAS PubMed Google Scholar
  21. Vialard, J. E., Gilbert, C. S., Green, C. M. & Lowndes, N. F. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J. 17, 5679–5688 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  22. Emili, A. MEC1-dependent phosphorylation of Rad9p in response to DNA damage. Mol. Cell 2, 183–189 (1998).
    Article CAS PubMed Google Scholar
  23. Foiani, M. et al. DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae. Mutat. Res. 451, 187–196 (2000).
    Article CAS PubMed Google Scholar
  24. Barbet, N. C. & Carr, A. M. Fission yeast wee1 protein kinase is not required for DNA damage-dependent mitotic arrest. Nature 364, 824–827 (1993).
    Article CAS PubMed Google Scholar
  25. Enoch, T., Carr, A. M. & Nurse, P. Fission yeast genes involved in coupling mitosis to completion of DNA replication. Genes Dev. 6, 2035–2046 (1992).
    Article CAS PubMed Google Scholar
  26. Allen, J. B. & Elledge, S. J. A family of vectors that facilitate transposon and insertional mutagenesis of cloned genes in yeast. Yeast 10, 1267–1272 (1994).
    Article CAS PubMed Google Scholar
  27. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).
    Article CAS PubMed Google Scholar
  28. Paciotti, V., Lucchini, G., Plevani, P., and Longhese, M. P. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. EMBO J. 17, 4199–4209 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  29. Bahler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998).
    Article CAS PubMed Google Scholar
  30. Russell, P. & Nurse P. cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45, 145–153 (1986).
    Article CAS PubMed Google Scholar
  31. Caspari, T. et al. Characterization of Schizosaccharomyces pombe Hus1: a PCNA-related protein that associates with Rad1 and Rad9. Mol. Cell Biol. 20, 1254–1262 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  32. Tasto, J. J., Carnahan, R. H., McDonald, W. H. & Gould, K. L. Vectors and gene targeting modules for tandem affinity purification in Schizosaccharomyces pombe. Yeast 18, 657–662 (2001).
    Article CAS PubMed Google Scholar

Download references