DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei (original) (raw)
References
Gurdon, J.B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol.10, 622–640 (1962). CASPubMed Google Scholar
Gurdon, J.B., Byrne, J.A. & Simonsson, S. Nuclear reprogramming and stem cell creation. Proc. Natl Acad. Sci. USA100, 11819–11822 (2003). ArticleCASPubMedPubMed Central Google Scholar
De Robertis, E.M. & Gurdon, J.B. Gene activation in somatic nuclei after injection into amphibian oocytes. Proc. Natl Acad. Sci. USA74, 2470–2474 (1977). ArticleCASPubMedPubMed Central Google Scholar
Byrne, J.A., Simonsson, S., Western, P.S. & Gurdon, J.B. Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr. Biol.13, 1206–1213 (2003). ArticleCASPubMed Google Scholar
Surani, M.A. Reprogramming of genome function through epigenetic inheritance. Nature414, 122–128 (2001). ArticleCASPubMed Google Scholar
Stancheva, I., El-Maarri, O., Walter, J., Niveleau, A. & Meehan, R.R. DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos. Dev. Biol.243, 155–165 (2002). ArticleCASPubMed Google Scholar
Boiani, M., Eckardt, S., Scholer, H.R. & McLaughlin, K.J. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev.16, 1209–1219 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bortvin, A. et al. Incomplete reactivation of _Oct4_-related genes in mouse embryos cloned from somatic nuclei. Development130, 1673–1680 (2003). ArticleCASPubMed Google Scholar
Dean, W., Santos, F. & Reik, W. Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin. Cell Dev. Biol.14, 93–100 (2003). ArticleCASPubMed Google Scholar
Matsuo, K. et al. An embryonic demethylation mechanism involving binding of transcription factors to replicating DNA. EMBO J.17, 1446–1453 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kimura, H., Suetake, I. & Tajima, S. Xenopus maintenance-type DNA methyltransferase is accumulated and translocated into germinal vesicles of oocytes. J. Biochem. (Tokyo)125, 1175–1182 (1999). ArticleCAS Google Scholar
Curradi, M., Izzo, A., Badaracco, G. & Landsberger, N. Molecular mechanisms of gene silencing mediated by DNA methylation. Mol. Cell. Biol.22, 3157–3173 (2002). ArticleCASPubMedPubMed Central Google Scholar
Pesce, M. & Scholer, H.R. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells19, 271–278 (2001). ArticleCASPubMed Google Scholar
Niwa, H., Miyazaki, J. & Smith, A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet.24, 372–376 (2000). ArticleCASPubMed Google Scholar
Nordhoff, V. et al. Comparative analysis of human, bovine, and murine Oct-4 upstream promoter sequences. Mamm. Genome12, 309–317 (2001). ArticleCASPubMed Google Scholar
Gidekel, S. & Bergman, Y. A unique developmental pattern of Oct-3/4 DNA methylation is controlled by a _cis_-demodification element. J. Biol. Chem.277, 34521–34530 (2002). ArticleCASPubMed Google Scholar
Gurdon, J.B. & Melton, D.A. Gene transfer in amphibian eggs and oocytes. Annu. Rev. Genet.15, 189–218 (1981). ArticleCASPubMed Google Scholar
Belikov, S., Gelius, B., Almouzni, G. & Wrange, O. Hormone activation induces nucleosome positioning in vivo. EMBO J.19, 1023–1033 (2000). ArticleCASPubMedPubMed Central Google Scholar
Modak, S.P., Principaud, E. & Spohr, G. Regulation of Xenopus c-myc promoter activity in oocytes and embryos. Oncogene8, 645–654 (1993). CASPubMed Google Scholar
Luckow, B. & Schutz, G. CAT constructions with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Res.15, 5490 (1987). ArticleCASPubMedPubMed Central Google Scholar
Mohun, T.J., Garrett, N. & Gurdon, J.B. Upstream sequences required for tissue-specific activation of the cardiac actin gene in Xenopus laevis embryos. EMBO J.5, 3185–3193 (1986). ArticleCASPubMedPubMed Central Google Scholar
Steinbeisser, H., Hofmann, A., Stutz, F. & Trendelenburg, M.F. Different regulatory elements are required for cell-type and stage specific expression of the Xenopus laevis skeletal muscle actin gene upon injection in X. laevis oocytes and embryos. Nucleic Acids Res.16, 3223–3238 (1988). ArticleCASPubMedPubMed Central Google Scholar
Siegfried, Z. et al. DNA methylation represses transcription in vivo. Nature Genet.22, 203–206 (1999). ArticleCASPubMed Google Scholar
Hattori, N. et al. Epigenetic control of mouse Oct-4 gene expression in ES cells and TS cells. J. Biol. Chem.279, 17063–17069 (2004). ArticleCASPubMed Google Scholar
Hinkley, C.S., Martin, J.F., Leibham, D. & Perry, M. Sequential expression of multiple POU proteins during amphibian early development. Mol. Cell. Biol.12, 638–649 (1992). ArticleCASPubMedPubMed Central Google Scholar
Kikyo, N., Wade, P.A., Guschin, D., Ge, H. & Wolffe, A.P. Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI. Science289, 2360–2362 (2000). ArticleCASPubMed Google Scholar
Wade, P.A. & Kikyo, N. Chromatin remodeling in nuclear cloning. Eur. J.Biochem.269, 2284–2287 (2002). CAS Google Scholar
Gurdon, J.B. Nuclear transplantation in eggs and oocytes. J. Cell Sci. Suppl.4, 287–318 (1986). ArticleCASPubMed Google Scholar
Gonda, K. et al. Reversible disassembly of somatic nucleoli by the germ cell proteins FRGY2a and FRGY2b. Nature Cell Biol.5, 205–210 (2003). ArticleCASPubMed Google Scholar