Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly (original) (raw)

References

  1. Gerace, L. & Burke, B. Functional organization of the nuclear envelope. Annu. Rev. Cell Biol. 4, 335–374 (1988).
    Article CAS Google Scholar
  2. Gant, T. M. & Wilson K. L. Nuclear assembly. Annu. Rev. Cell Dev. Biol. 13, 669–695 (1997).
    Article CAS Google Scholar
  3. Franke, W. W., Scheer, U., Krohne, G. & Jarasch, E. D. The nuclear envelope and the architecture of the nuclear periphery. J. Cell Biol. 91, 39s–50s (1981).
    Article CAS Google Scholar
  4. Ellenberg, J. et al. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell Biol. 138, 1193–1206 (1997).
    Article CAS Google Scholar
  5. Powell, L. & Burke, B. Internuclear exchange of an inner nuclear membrane protein (p55) in heterokaryons: in vivo evidence for the interaction of p55 with the nuclear lamina. J. Cell Biol. 111, 2225–2234 (1990).
    Article CAS Google Scholar
  6. Soullam, B. & Worman, H. J. Signals and structural features involved in integral membrane protein targeting to the inner nuclear membrane. J. Cell Biol. 130, 15–27 (1995).
    Article CAS Google Scholar
  7. Lohka, M. J. & Masui, Y. Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220, 719–721 (1983).
    Article CAS Google Scholar
  8. Burke, B. & Gerace, L. A cell free system to study reassembly of the nuclear envelope at the end of mitosis. Cell 28, 639–652 (1986).
    Article Google Scholar
  9. Dreier, L. & Rapoport, T. A. In vitro formation of the endoplasmic reticulum occurs independently of microtubules by a controlled fusion reaction. J. Cell Biol. 148, 883–898 (2000).
    Article CAS Google Scholar
  10. Macaulay, C. & Forbes, D. J. Assembly of the nuclear pore: biochemically distinct steps revealed with NEM, GTPγS, and BAPTA. J. Cell Biol. 132, 5–20 (1996).
    Article CAS Google Scholar
  11. Vigers, G. P. & Lohka, M. J. A distinct vesicle population targets membranes and pore complexes to the nuclear envelope in Xenopus eggs. J. Cell Biol. 112, 545–556 (1991).
    Article CAS Google Scholar
  12. Newport, J. & Dunphy, W. Characterization of the membrane binding and fusion events during nuclear envelope assembly using purified components. J. Cell Biol. 116, 295–306 (1992).
    Article CAS Google Scholar
  13. Marshall, I. C. B. & Wilson, K. L. Nuclear envelope assembly after mitosis. Trends Cell Biol. 7, 69–74 (1997).
    Article CAS Google Scholar
  14. Boman, A. L., Delannoy, M. R., & Wilson, K. L. GTP hydrolysis is required for vesicle fusion during nuclear envelope assembly in vitro. J. Cell Biol. 116, 281–294 (1992).
    Article CAS Google Scholar
  15. Hetzer, M., Bilbao-Cortes, D., Walther, T. C., Gruss, O. J. & Mattaj, I. W. GTP hydrolysis by Ran is required for nuclear envelope assembly. Mol. Cell 5, 1013–1024 (2000).
    Article CAS Google Scholar
  16. Zhang, C. & Clarke, P. R. Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts. Science 26, 1429–1432 (2000).
    Article Google Scholar
  17. Zhang, C. & Clarke, P. R. Roles of Ran-GTP and Ran-GDP in precursor vesicle recruitment and fusion during nuclear envelope assembly in a human cell-free system. Curr. Biol. 6, 208–212 (2001).
    Article Google Scholar
  18. Benavente, R., Dabauvalle, M. C., Scheer, U. & Chaly, N. Functional role of newly formed pore complexes in postmitotic nuclear reorganization. Chromosoma 98, 233–241 (1989).
    Article CAS Google Scholar
  19. Wilson, K. L. & Newport, J. A trypsin-sensitive receptor on membrane vesicles is required for nuclear envelope formation in vitro. J. Cell Biol. 107, 57–68 (1988).
    Article CAS Google Scholar
  20. Drummond, S. et al. Temporal differences in the appearance of NEP-B78 and a LBR-like protein during Xenopus nuclear envelope reassembly reflect the order recruitment of functionally discrete vesicle types. J. Cell Biol. 144, 225–240 (1999).
    Article CAS Google Scholar
  21. Sasagawa, S., Yamamoto, A., Ichimura, T., Omata, S. & Horigome, T. In vitro nuclear assembly with affinity-purified nuclear precursor vesicle fractions, PV1 and PV2. Euro. J. Cell Biol. 78, 593–600 (1999).
    Article CAS Google Scholar
  22. Patel, S. & Latterich, M. The AAA team: related ATPases with diverse functions. Trends Cell Biol. 8, 65–71 (1998).
    Article CAS Google Scholar
  23. Kondo, H et al. p47 is a cofactor for p97-mediated membrane fusion. Nature 388, 75–78 (1997).
    Article CAS Google Scholar
  24. Roy, L. et al. Role of p97 and syntaxin 5 in the assembly of transitional endoplasmic reticulum. Mol. Biol. Cell 11, 2529–2542 (2000).
    Article CAS Google Scholar
  25. Rabouille, C. et al. Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro. Cell 92, 603–610 (1998).
    Article CAS Google Scholar
  26. Meyer, H. H., Shorter, J. G., Seemann, J., Pappin, D. & Warren, G. A complex of mammalian Ufd1 and Npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 19, 2181–2192 (2000).
    Article CAS Google Scholar
  27. Latterich, M., Frohlich, K. U. & Schekman, R. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82, 885–893 (1995).
    Article CAS Google Scholar
  28. Johnson, E. S., Ma, P. C., Ota, I. M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442–17456 (1995).
    Article CAS Google Scholar
  29. Ghislain, M., Dohmen, R. J., Levy, F. & Varshavsky, A. Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae. EMBO J. 15, 4884–4899 (1996).
    Article CAS Google Scholar
  30. Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102, 577–586 (2000).
    Article CAS Google Scholar
  31. DeHoratius, C. & Silver, P. A. Nuclear transport defects and nuclear envelope alterations are associated with mutation of the Saccharomyces cerevisiae NPL4 gene. Mol. Biol. Cell 7, 1835–1855 (1996).
    Article CAS Google Scholar
  32. Whaley, W. G. The Golgi apparatus. Cell Biology Monographs, Continuation of Protoplasmatologia, 2 (Springer, Vienna, 1975).
    Google Scholar
  33. Rossanese, O. W. et al. Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J. Cell Biol. 145, 68–81 (1999).
    Article Google Scholar
  34. Lavoie, C., Lanoix, J., Kan, F. W. & Paiement, J. Cell-free assembly of rough and smooth endoplasmic reticulum. J. Cell Sci. 109, 1415–1425 (1996).
    CAS PubMed Google Scholar
  35. Davis, L. I. & Blobel, G. Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc. Natl Acad. Sci. USA 84, 7552–7556 (1987).
    Article CAS Google Scholar

Download references