Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly (original) (raw)
References
Gerace, L. & Burke, B. Functional organization of the nuclear envelope. Annu. Rev. Cell Biol.4, 335–374 (1988). ArticleCAS Google Scholar
Gant, T. M. & Wilson K. L. Nuclear assembly. Annu. Rev. Cell Dev. Biol.13, 669–695 (1997). ArticleCAS Google Scholar
Franke, W. W., Scheer, U., Krohne, G. & Jarasch, E. D. The nuclear envelope and the architecture of the nuclear periphery. J. Cell Biol.91, 39s–50s (1981). ArticleCAS Google Scholar
Ellenberg, J. et al. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell Biol.138, 1193–1206 (1997). ArticleCAS Google Scholar
Powell, L. & Burke, B. Internuclear exchange of an inner nuclear membrane protein (p55) in heterokaryons: in vivo evidence for the interaction of p55 with the nuclear lamina. J. Cell Biol.111, 2225–2234 (1990). ArticleCAS Google Scholar
Soullam, B. & Worman, H. J. Signals and structural features involved in integral membrane protein targeting to the inner nuclear membrane. J. Cell Biol.130, 15–27 (1995). ArticleCAS Google Scholar
Lohka, M. J. & Masui, Y. Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science220, 719–721 (1983). ArticleCAS Google Scholar
Burke, B. & Gerace, L. A cell free system to study reassembly of the nuclear envelope at the end of mitosis. Cell28, 639–652 (1986). Article Google Scholar
Dreier, L. & Rapoport, T. A. In vitro formation of the endoplasmic reticulum occurs independently of microtubules by a controlled fusion reaction. J. Cell Biol.148, 883–898 (2000). ArticleCAS Google Scholar
Macaulay, C. & Forbes, D. J. Assembly of the nuclear pore: biochemically distinct steps revealed with NEM, GTPγS, and BAPTA. J. Cell Biol.132, 5–20 (1996). ArticleCAS Google Scholar
Vigers, G. P. & Lohka, M. J. A distinct vesicle population targets membranes and pore complexes to the nuclear envelope in Xenopus eggs. J. Cell Biol.112, 545–556 (1991). ArticleCAS Google Scholar
Newport, J. & Dunphy, W. Characterization of the membrane binding and fusion events during nuclear envelope assembly using purified components. J. Cell Biol.116, 295–306 (1992). ArticleCAS Google Scholar
Marshall, I. C. B. & Wilson, K. L. Nuclear envelope assembly after mitosis. Trends Cell Biol.7, 69–74 (1997). ArticleCAS Google Scholar
Boman, A. L., Delannoy, M. R., & Wilson, K. L. GTP hydrolysis is required for vesicle fusion during nuclear envelope assembly in vitro. J. Cell Biol.116, 281–294 (1992). ArticleCAS Google Scholar
Hetzer, M., Bilbao-Cortes, D., Walther, T. C., Gruss, O. J. & Mattaj, I. W. GTP hydrolysis by Ran is required for nuclear envelope assembly. Mol. Cell5, 1013–1024 (2000). ArticleCAS Google Scholar
Zhang, C. & Clarke, P. R. Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts. Science26, 1429–1432 (2000). Article Google Scholar
Zhang, C. & Clarke, P. R. Roles of Ran-GTP and Ran-GDP in precursor vesicle recruitment and fusion during nuclear envelope assembly in a human cell-free system. Curr. Biol.6, 208–212 (2001). Article Google Scholar
Benavente, R., Dabauvalle, M. C., Scheer, U. & Chaly, N. Functional role of newly formed pore complexes in postmitotic nuclear reorganization. Chromosoma98, 233–241 (1989). ArticleCAS Google Scholar
Wilson, K. L. & Newport, J. A trypsin-sensitive receptor on membrane vesicles is required for nuclear envelope formation in vitro. J. Cell Biol.107, 57–68 (1988). ArticleCAS Google Scholar
Drummond, S. et al. Temporal differences in the appearance of NEP-B78 and a LBR-like protein during Xenopus nuclear envelope reassembly reflect the order recruitment of functionally discrete vesicle types. J. Cell Biol.144, 225–240 (1999). ArticleCAS Google Scholar
Sasagawa, S., Yamamoto, A., Ichimura, T., Omata, S. & Horigome, T. In vitro nuclear assembly with affinity-purified nuclear precursor vesicle fractions, PV1 and PV2. Euro. J. Cell Biol.78, 593–600 (1999). ArticleCAS Google Scholar
Patel, S. & Latterich, M. The AAA team: related ATPases with diverse functions. Trends Cell Biol.8, 65–71 (1998). ArticleCAS Google Scholar
Kondo, H et al. p47 is a cofactor for p97-mediated membrane fusion. Nature388, 75–78 (1997). ArticleCAS Google Scholar
Roy, L. et al. Role of p97 and syntaxin 5 in the assembly of transitional endoplasmic reticulum. Mol. Biol. Cell11, 2529–2542 (2000). ArticleCAS Google Scholar
Rabouille, C. et al. Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro. Cell92, 603–610 (1998). ArticleCAS Google Scholar
Meyer, H. H., Shorter, J. G., Seemann, J., Pappin, D. & Warren, G. A complex of mammalian Ufd1 and Npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J.19, 2181–2192 (2000). ArticleCAS Google Scholar
Latterich, M., Frohlich, K. U. & Schekman, R. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell82, 885–893 (1995). ArticleCAS Google Scholar
Johnson, E. S., Ma, P. C., Ota, I. M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem.270, 17442–17456 (1995). ArticleCAS Google Scholar
Ghislain, M., Dohmen, R. J., Levy, F. & Varshavsky, A. Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae. EMBO J.15, 4884–4899 (1996). ArticleCAS Google Scholar
Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell102, 577–586 (2000). ArticleCAS Google Scholar
DeHoratius, C. & Silver, P. A. Nuclear transport defects and nuclear envelope alterations are associated with mutation of the Saccharomyces cerevisiae NPL4 gene. Mol. Biol. Cell7, 1835–1855 (1996). ArticleCAS Google Scholar
Whaley, W. G. The Golgi apparatus. Cell Biology Monographs, Continuation of Protoplasmatologia, 2 (Springer, Vienna, 1975). Google Scholar
Rossanese, O. W. et al. Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J. Cell Biol.145, 68–81 (1999). Article Google Scholar
Lavoie, C., Lanoix, J., Kan, F. W. & Paiement, J. Cell-free assembly of rough and smooth endoplasmic reticulum. J. Cell Sci.109, 1415–1425 (1996). CASPubMed Google Scholar
Davis, L. I. & Blobel, G. Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc. Natl Acad. Sci. USA84, 7552–7556 (1987). ArticleCAS Google Scholar