IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms (original) (raw)
References
Salvesen, G. S. & Duckett, C. S. Apoptosis: IAP proteins: blocking the road to death's door. Nature Rev. Mol. Cell Biol.3, 401–410 (2002). ArticleCAS Google Scholar
Goyal, L., McCall, K., Agapite, J., Hartwieg, E. & Steller, H. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J.19, 589–597 (2000). ArticleCAS Google Scholar
Lisi, S., Mazzon, I. & White, K. Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics154, 669–678 (2000). CASPubMedPubMed Central Google Scholar
Rodriguez, A. et al. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nature Cell Biol.1, 272–279 (1999). ArticleCAS Google Scholar
Wang, S. L., Hawkins, C. J., Yoo, S. J., Muller, H. A. & Hay, B. A. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell98, 453–463 (1999). ArticleCAS Google Scholar
Harlin, H., Reffey, S. B., Duckett, C. S., Lindsten, T. & Thompson, C. B. Characterization of XIAP-deficient mice. Mol. Cell. Biol.21, 3604–3608 (2001). ArticleCAS Google Scholar
Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell9, 459–470 (2002). ArticleCAS Google Scholar
Shiozaki, E. N. et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol. Cell11, 519–527 (2003). ArticleCAS Google Scholar
Suzuki, Y., Nakabayashi, Y., Nakata, K., Reed, J. C. & Takahashi, R. X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct modes. J. Biol. Chem.276, 27058–27063 (2001). ArticleCAS Google Scholar
Silke, J. et al. Direct inhibition of caspase 3 is dispensable for the anti-apoptotic activity of XIAP. EMBO J.20, 3114–3123 (2001). ArticleCAS Google Scholar
Chai, J. et al. Structural basis of caspase-7 inhibition by XIAP. Cell104, 769–780 (2001). ArticleCAS Google Scholar
Huang, Y. et al. Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell104, 781–790 (2001). CASPubMed Google Scholar
Riedl, S. J. et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell104, 791–800 (2001). ArticleCAS Google Scholar
Zachariou, A. et al. IAP-antagonists exhibit non-redundant modes of action through differential DIAP1 binding. EMBO J.22, 6642–6652 (2003). ArticleCAS Google Scholar
Yan, N., Wu, J. W., Chai, J., Li, W. & Shi, Y. Molecular mechanisms of DrICE inhibition by DIAP1 and removal of inhibition by Reaper, Hid and Grim. Nature Struct. Mol. Biol.11, 420–428 (2004). ArticleCAS Google Scholar
Yokokura, T. et al. Dissection of DIAP1 functional domains via a mutant replacement strategy. J. Biol. Chem. DOI: 10.1074/jbc.M409691200 (2004).
Ditzel, M. et al. Degradation of DIAP1 by the N-end rule pathway is essential for regulating apoptosis. Nature Cell Biol.5, 467–473 (2003). ArticleCAS Google Scholar
Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science234, 179–186 (1986). ArticleCAS Google Scholar
Varshavsky, A. Ubiquitin fusion technique and its descendants. Methods Enzymol.327, 578–593 (2000). ArticleCAS Google Scholar
Hawkins, C. J., Wang, S. L. & Hay, B. A. A cloning method to identify caspases and their regulators in yeast: Identification of Drosophila IAP1 as an inhibitor of the Drosophila caspase DCP-1. Proc. Natl Acad. Sci. USA96, 2885–2890 (1999). ArticleCAS Google Scholar
Hawkins, C. J. et al. The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM. J. Biol. Chem.275, 27084–27093. (2000). CASPubMed Google Scholar
Meier, P., Silke, J., Leevers, S. J. & Evan, G. I. The Drosophila caspase DRONC is regulated by DIAP1. EMBO J.19, 598–611 (2000). ArticleCAS Google Scholar
Wilson, R. et al. The DIAP1 RING finger mediates ubiquitination of Dronc and is indispensable for regulating apoptosis. Nature Cell Biol.4, 445–450 (2002). ArticleCAS Google Scholar
Schlegel, J. et al. CPP32/apopain is a key interleukin 1 β converting enzyme-like protease involved in Fas-mediated apoptosis. J. Biol. Chem.271, 1841–1844 (1996). ArticleCAS Google Scholar
Tenev, T., Zachariou, A., Wilson, R., Paul, A. & Meier, P. Jafrac2 is an IAP antagonist that promotes cell death by liberating Dronc from DIAP1. EMBO J.21, 5118–5129 (2002). ArticleCAS Google Scholar
Wu, J. W., Cocina, A. E., Chai, J., Hay, B. A. & Shi, Y. Structural analysis of a functional DIAP1 fragment bound to grim and hid peptides. Mol. Cell8, 95–104 (2001). ArticleCAS Google Scholar
Wu, G. et al. Structural basis of IAP recognition by Smac/DIABLO. Nature408, 1008–1012 (2000). ArticleCAS Google Scholar
Srinivasula, S. M. et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature410, 112–116 (2001). ArticleCAS Google Scholar
Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnol.17, 1030–1032 (1999). ArticleCAS Google Scholar
Tenev, T. et al. Perinuclear localization of the protein-tyrosine phosphatase SHP-1 and inhibition of epidermal growth factor-stimulated STAT1/3 activation in A431 cells. Eur. J. Cell Biol79, 261–271 (2000). ArticleCAS Google Scholar