Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia (original) (raw)
DeRosier, D.J. & Tilney, L.G. F-actin bundles are derivatives of microvilli: What does this tell us about how bundles might form? J. Cell Biol.148, 1–6 (2000). ArticleCAS Google Scholar
Tilney, L.G. & Tilney, M.S. Functional organization of the cytoskeleton. Hear. Res.22, 55–77 (1986). ArticleCAS Google Scholar
Tilney, L.G., Tilney, M.S. & DeRosier, D.J. Actin filaments, stereocilia, and hair cells: how cells count and measure. Annu. Rev. Cell Biol.8, 257–274 (1992). ArticleCAS Google Scholar
Probst, F.J. et al. Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science280, 1444–1447 (1998). ArticleCAS Google Scholar
Holme, R.H., Kiernan, B.W., Brown, S.D. & Steel, K.P. Elongation of hair cell stereocilia is defective in the mouse mutant whirler. J. Comp. Neurol.450, 94–102 (2002). Article Google Scholar
Mburu, P. et al. Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31. Nature Genet.34, 421–428 (2003). ArticleCAS Google Scholar
Edds, K.T. Dynamic aspects of filopodial formation by reorganization of microfilaments. J. Cell Biol.73, 479–491 (1977). ArticleCAS Google Scholar
Tilney, L.G., Bonder, E.M. & DeRosier, D.J. Actin filaments elongate from their membrane-associated ends. J. Cell Biol.90, 485–494 (1981). ArticleCAS Google Scholar
Mallavarapu, A. & Mitchison, T. Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J. Cell Biol.146, 1097–1106 (1999). ArticleCAS Google Scholar
Schneider, M.E., Belyantseva, I.A., Azevedo, R.B. & Kachar, B. Rapid renewal of auditory hair bundles. Nature418, 837–838 (2002). ArticleCAS Google Scholar
Bartles, J.R. Parallel actin bundles and their multiple actin-bundling proteins. Curr. Opin. Cell Biol.12, 72–78 (2000). ArticleCAS Google Scholar
Frolenkov, G.I., Belyantseva, I.A., Friedman, T.B. & Griffith, A.J. Genetic insights into the morphogenesis of inner ear hair cells. Nature Rev. Genet.5, 489–498 (2004). ArticleCAS Google Scholar
Gorelik, J. et al. Dynamic assembly of surface structures in living cells. Proc. Natl Acad. Sci. USA100, 5819–5822 (2003). ArticleCAS Google Scholar
Tilney, L.G., Tilney, M.S., Saunders, J.S. & DeRosier, D.J. Actin filaments, stereocilia, and hair cells of the bird cochlea. III. The development and differentiation of hair cells and stereocilia. Dev. Biol.116, 100–118 (1986). ArticleCAS Google Scholar
Kaltenbach, J.A., Falzarano, P.R. & Simpson, T.H. Postnatal development of the hamster cochlea. II. Growth and differentiation of stereocilia bundles. J. Comp. Neurol.350, 187–198 (1994). ArticleCAS Google Scholar
Zine, A. & Romand, R. Development of the auditory receptors of the rat: a SEM study. Brain Res.721, 49–58 (1996). ArticleCAS Google Scholar
Tilney, L.G., Tilney, M.S. & Cotanche, D.A. Actin filaments, stereocilia, and hair cells of the bird cochlea. V. How the staircase pattern of stereociliary lengths is generated. J. Cell Biol.106, 355–365 (1988). ArticleCAS Google Scholar
Wang, A. et al. Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science280, 1447–1451 (1998). ArticleCAS Google Scholar
Belyantseva, I.A., Boger, E.T. & Friedman, T.B. Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc. Natl Acad. Sci. USA100, 13958–13963 (2003). ArticleCAS Google Scholar
Anderson, D.W. et al. The motor and tail regions of myosin XV are critical for normal structure and function of auditory and vestibular hair cells. Hum. Mol. Genet.9, 1729–1738 (2000). ArticleCAS Google Scholar
Tokuo, H. & Ikebe, M. Myosin X transports Mena/VASP to the tip of filopodia. Biochem. Biophys. Res. Commun.319, 214–220 (2004). ArticleCAS Google Scholar
Rzadzinska, A.K., Schneider, M.E., Davies, C., Riordan, G.P. & Kachar, B. An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal. J. Cell Biol.164, 887–897 (2004). ArticleCAS Google Scholar
Hasson, T. et al. Unconventional myosins in inner-ear sensory epithelia. J. Cell Biol.137, 1287–1307 (1997). ArticleCAS Google Scholar
Selve, N. & Wegner, A. Rate of treadmilling of actin filaments in vitro. J. Mol. Biol.187, 627–631 (1986). ArticleCAS Google Scholar
Shimada, T., Sasaki, N., Ohkura, R. & Sutoh, K. Alanine scanning mutagenesis of the switch I region in the ATPase site of Dictyostelium discoideum myosin II. Biochemistry36, 14037–14043 (1997). ArticleCAS Google Scholar
Kambara, T. et al. Functional significance of the conserved residues in the flexible hinge region of the myosin motor domain. J. Biol. Chem.274, 16400–16406 (1999). ArticleCAS Google Scholar
Liang, Y. et al. Characterization of the human and mouse unconventional myosin XV genes responsible for hereditary deafness DFNB3 and shaker 2. Genomics61, 243–258 (1999). ArticleCAS Google Scholar
Sheng, M. & Sala, C. PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci.24, 1–29 (2001). ArticleCAS Google Scholar
Berg, J.S. & Cheney, R.E. Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nature Cell Biol.4, 246–250 (2002). ArticleCAS Google Scholar
Sekerkova, G. et al. Espins are multifunctional actin cytoskeletal regulatory proteins in the microvilli of chemosensory and mechanosensory cells. J. Neurosci.24, 5445–5456 (2004). ArticleCAS Google Scholar