Neddylation and deneddylation regulate Cul1 and Cul3 protein accumulation (original) (raw)
Ou, C. Y., Lin, Y. F., Chen, Y. J. & Chien, C. T. Distinct protein degradation mechanisms mediated by Cul1 and Cul3 controlling Ci stability in Drosophila eye development. Genes Dev.16, 2403–2414 (2002). ArticleCAS Google Scholar
Pintard, L. et al. Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for degradation at the meiosis-to-mitosis transition in C. elegans. Curr. Biol.13, 911–921 (2003). ArticleCAS Google Scholar
Lyapina, S. et al. Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science292, 1382–1385 (2001). ArticleCAS Google Scholar
Zhou, C. et al. The fission yeast COP9/signalosome is involved in cullin modification by ubiquitin-related Ned8p. BMC Biochem.2, 7 (2001). ArticleCAS Google Scholar
Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin-RING ubiquitin ligases. Nature Rev. Mol. Cell Biol.6, 9–20 (2005). ArticleCAS Google Scholar
Willems, A. R., Schwab, M. & Tyers, M. A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. Biochim. Biophys. Acta1695, 133–170 (2004). ArticleCAS Google Scholar
Kamura, T., Conrad, M. N., Yan, Q., Conaway, R. C. & Conaway, J. W. The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. Genes Dev.13, 2928–2933 (1999). ArticleCAS Google Scholar
Hori, T. et al. Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene18, 6829–6834 (1999). ArticleCAS Google Scholar
Pan, Z. Q., Kentsis, A., Dias, D. C., Yamoah, K. & Wu, K. Nedd8 on cullin: building an expressway to protein destruction. Oncogene23, 1985–1997 (2004). ArticleCAS Google Scholar
Wu, K., Chen, A. & Pan, Z. Q. Conjugation of Nedd8 to CUL1 enhances the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization. J. Biol. Chem.275, 32317–32324 (2000). ArticleCAS Google Scholar
Kawakami, T. et al. NEDD8 recruits E2-ubiquitin to SCF E3 ligase. EMBO J.20, 4003–4012 (2001). ArticleCAS Google Scholar
Pintard, L. et al. The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature425, 311–316 (2003). ArticleCAS Google Scholar
Geyer, R., Wee, S., Anderson, S., Yates, J. & Wolf, D. A. BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol. Cell12, 783–790 (2003). ArticleCAS Google Scholar
Wei, N. & Deng, X. W. The COP9 signalosome. Annu. Rev. Cell Dev. Biol.19, 261–286 (2003). ArticleCAS Google Scholar
Cope, G. A. et al. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science298, 608–611 (2002). ArticleCAS Google Scholar
Gusmaroli, G., Feng, S. & Deng, X. W. The Arabidopsis CSN5A and CSN5B subunits are present in distinct COP9 signalosome complexes, and mutations in their JAMM domains exhibit differential dominant negative effects on development. Plant Cell16, 2984–3001 (2004). ArticleCAS Google Scholar
Dohmann, E. M., Kuhnle, C. & Schwechheimer, C. Loss of the CONSTITUTIVE PHOTOMORPHOGENIC9 signalosome subunit 5 is sufficient to cause the cop/det/fus mutant phenotype in Arabidopsis. Plant Cell17, 1967–1978 (2005). ArticleCAS Google Scholar
Doronkin, S., Djagaeva, I. & Beckendorf, S. K. The COP9 signalosome promotes degradation of Cyclin E during early Drosophila oogenesis. Dev. Cell4, 699–710 (2003). ArticleCAS Google Scholar
Wee, S., Geyer, R. K., Toda, T. & Wolf, D. A. CSN facilitates Cullin–RING ubiquitin ligase function by counteracting autocatalytic adapter instability. Nature Cell Biol.7, 387–391 (2005). ArticleCAS Google Scholar
Cope, G. A. & Deshaies, R. J. COP9 signalosome: a multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell114, 663–671 (2003). ArticleCAS Google Scholar
Wolf, D. A., Zhou, C. & Wee, S. The COP9 signalosome: an assembly and maintenance platform for cullin ubiquitin ligases? Nature Cell Biol.5, 1029–1033 (2003). ArticleCAS Google Scholar
von Arnim, A. G. On again-off again: COP9 signalosome turns the key on protein degradation. Curr. Opin. Plant Biol.6, 520–529 (2003). ArticleCAS Google Scholar
Oron, E. et al. COP9 signalosome subunits 4 and 5 regulate multiple pleiotropic pathways in Drosophila melanogaster. Development129, 4399–4409 (2002). CASPubMed Google Scholar
Uhle, S. et al. Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome. EMBO J.22, 1302–1312 (2003). ArticleCAS Google Scholar
Zhou, C. et al. Fission yeast COP9/signalosome suppresses cullin activity through recruitment of the deubiquitylating enzyme Ubp12p. Mol. Cell11, 927–938 (2003). ArticleCAS Google Scholar
Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell113, 357–367 (2003). ArticleCAS Google Scholar
He, Q., Cheng, P. & Liu, Y. The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex. Genes Dev.19, 1518–1531 (2005). ArticleCAS Google Scholar
Doronkin, S., Djagaeva, I. & Beckendorf, S. K. CSN5/Jab1 mutations affect axis formation in the Drosophila oocyte by activating a meiotic checkpoint. Development129, 5053–5064 (2002). CASPubMed Google Scholar
Worby, C. A., Simonson-Leff, N. & Dixon, J. E. RNA interference of gene expression (RNAi) in cultured Drosophila cells. Sci. STKE2001, pl1 (2001). CASPubMed Google Scholar
Chen, C. K. & Chien, C. T. Negative regulation of atonal in proneural cluster formation of Drosophila R8 photoreceptors. Proc. Natl Acad. Sci. USA96, 5055–5060 (1999). ArticleCAS Google Scholar