The endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R (original) (raw)
References
Wei, M. C. et al. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science292, 727–730 (2001). ArticleCAS Google Scholar
Vander Heiden, M. G. & Thompson, C. B. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nature Cell Biol.1, E209–E216 (1999). ArticleCAS Google Scholar
Krajewski, S. et al. Investigation of the subcellular distribution of the Bcl-2 oncoprotein - residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res.53, 4701–4714 (1993). CASPubMed Google Scholar
Distelhorst, C. W. & Shore, G. C. Bcl-2 and calcium: controversy beneath the surface. Oncogene23, 2875–2880 (2004). ArticleCAS Google Scholar
Jurgensmeier, J. M. et al. Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl Acad. Sci. USA95, 4997–5002 (1998). ArticleCAS Google Scholar
Antonsson, B. et al. Inhibition of Bax channel-forming activity by Bcl-2. Science277, 370–372 (1997). ArticleCAS Google Scholar
Zong, W. X. et al. Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J. Cell Biol.162, 59–69 (2003). ArticleCAS Google Scholar
Breckenridge, D. G., Germain, M., Mathai, J. P., Nguyen, M. & Shore, G. C. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene22, 8608–8618 (2003). ArticleCAS Google Scholar
Orrenius, S., Zhivotovsky, B. & Nicotera, P. Regulation of cell death: the calcium-apoptosis link. Nature Rev. Mol. Cell Biol.4, 552–565 (2003). ArticleCAS Google Scholar
Scorrano, L. et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: A control point for apoptosis. Science300, 135–139 (2003). ArticleCAS Google Scholar
Rizzuto, R. et al. Calcium and apoptosis: facts and hypotheses. Oncogene22, 8619–8627 (2003). ArticleCAS Google Scholar
Duchen, M. R. Mitochondria and calcium: from cell signalling to cell death. J. Physiol.529, 57–68 (2000). ArticleCAS Google Scholar
Nakagawa, T. & Yuan, J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J. Cell Biol.150, 887–894 (2000). ArticleCAS Google Scholar
Szalai, G., Krishnamurthy, R. & Hajnoczky, G. Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J.18, 6349–6361 (1999). ArticleCAS Google Scholar
Oakes, S. A. et al. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc. Natl Acad. Sci. USA102, 105–110 (2005). ArticleCAS Google Scholar
Chen, R. et al. Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J. Cell Biol.166, 193–203 (2004). ArticleCAS Google Scholar
Mak, D. O., McBride, S. & Foskett, J. K. Inositol 1,4,5-trisphosphate activation of inositol trisphosphate receptor Ca2+ channel by ligand tuning of Ca2+ inhibition. Proc. Natl Acad. Sci. USA95, 15821–15825 (1998). ArticleCAS Google Scholar
Luzzi, V., Sims, C. E., Soughayer, J. S. & Allbritton, N. L. The physiologic concentration of inositol 1,4,5-trisphosphate in the oocytes of Xenopus laevis. J. Biol. Chem.273, 28657–28662 (1998). ArticleCAS Google Scholar
Korsmeyer, S. J. et al. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ.7, 1166–1173 (2000). ArticleCAS Google Scholar
Minn, A. J. et al. Bcl-xL forms an ion channel in synthetic lipid membranes. Nature385, 353–357 (1997). ArticleCAS Google Scholar
Sugawara, H., Kurosaki, M., Takata, M. & Kurosaki, T. Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J.16, 3078–3088 (1997). ArticleCAS Google Scholar
Foyouzi-Youssefi, R. et al. Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc. Natl Acad. Sci. USA97, 5723–5728 (2000). ArticleCAS Google Scholar
Palmer, A. E., Jin, C., Reed, J. C. & Tsien, R. Y. Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc. Natl Acad. Sci. USA101, 17404–17409 (2004). ArticleCAS Google Scholar
Pinton, P. et al. Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J. Cell Biol.148, 857–862 (2000). ArticleCAS Google Scholar
Niiro, H. & Clark, E. A. Regulation of B-cell fate by antigen-receptor signals. Nature Rev. Immunol.2, 945–956 (2002). ArticleCAS Google Scholar
Doi, T., Motoyama, N., Tokunaga, A. & Watanabe, T. Death signals from the B cell antigen receptor target mitochondria, activating necrotic and apoptotic death cascades in a murine B cell line, WEHI-231. Int. Immunol.11, 933–941 (1999). ArticleCAS Google Scholar
Hajnoczky, G., Robb-Gaspers, L. D., Seitz, M. B. & Thomas, A. P. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82, 415–424 (1995).
Kowaltowski, A. J. & Fiskum, G. Redox mechanisms of cytoprotection by Bcl-2. Antioxid. Redox. Signal.7, 508–514 (2005). ArticleCAS Google Scholar
Hammerman, P. S., Fox, C. J. & Thompson, C. B. Beginnings of a signal-transduction pathway for bioenergetic control of cell survival. Trends Biochem. Sci.29, 586–592 (2004). ArticleCAS Google Scholar
Plas, D. R. & Thompson, C. B. Cell metabolism in the regulation of programmed cell death. Trends Endocrinol. Metab.13, 75–78 (2002). Article Google Scholar
Shimizu, H., Borin, M. L. & Blaustein, M. P. Use of La3+ to distinguish activity of the plasmalemmal Ca2+ pump from Na+/Ca2+ exchange in arterial myocytes. Cell Calcium21, 31–41 (1997). ArticleCAS Google Scholar
Haynes, L. P., Tepikin, A. V. & Burgoyne, R. D. Calcium-binding protein 1 is an inhibitor of agonist-evoked, inositol 1,4,5-trisphosphate-mediated calcium signaling. J. Biol. Chem.279, 547–555 (2004). ArticleCAS Google Scholar