The Polo kinase Plk4 functions in centriole duplication (original) (raw)

References

  1. Barr, F. A., Sillje, H. H. & Nigg, E. A. Polo-like kinases and the orchestration of cell division. Nature Rev. Mol. Cell Biol. 5, 429–440 (2004).
    Article CAS Google Scholar
  2. Glover, D. M. Polo kinase and progression through M phase in Drosophila: a perspective from the spindle poles. Oncogene 24, 230–237 (2005).
    Article CAS Google Scholar
  3. Swallow, C. J., Ko, M. A., Siddiqui, N. U., Hudson, J. W. & Dennis, J. W. Sak/Plk4 and mitotic fidelity. Oncogene 24, 306–312 (2005).
    Article CAS Google Scholar
  4. Elia, A. E., Cantley, L. C. & Yaffe, M. B. Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299, 1228–1231 (2003).
    Article CAS Google Scholar
  5. Leung, G. C. et al. The Sak polo-box comprises a structural domain sufficient for mitotic subcellular localization. Nature Struct. Biol. 9, 719–724 (2002).
    Article CAS Google Scholar
  6. Lowery, D. M., Lim, D. & Yaffe, M. B. Structure and function of Polo-like kinases. Oncogene 24, 248–259 (2005).
    Article CAS Google Scholar
  7. Fode, C., Motro, B., Yousefi, S., Heffernan, M. & Dennis, J. W. Sak, a murine protein-serine/threonine kinase that is related to the Drosophila polo kinase and involved in cell proliferation. Proc. Natl Acad. Sci. USA 91, 6388–6392 (1994).
    Article CAS Google Scholar
  8. Karn, T. et al. Human Sak related to the Plk/polo family of cell cycle kinases shows high mRNA expression in testis. Oncol. Rep. 4, 505–510 (1997).
    CAS PubMed Google Scholar
  9. Hudson, J. W. et al. Late mitotic failure in mice lacking Sak, a polo-like kinase. Curr. Biol. 11, 441–446 (2001).
    Article CAS Google Scholar
  10. Ko, M. A. et al. Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis. Nature Genet. 37, 883–888 (2005).
    Article CAS Google Scholar
  11. Fode, C., Binkert, C. & Dennis, J. W. Constitutive expression of murine Sak-a suppresses cell growth and induces multinucleation. Mol. Cell Biol. 16, 4665–4672 (1996).
    Article CAS Google Scholar
  12. Meraldi, P., Honda, R. & Nigg, E. A. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO J. 21, 483–492 (2002).
    Article CAS Google Scholar
  13. Nigg, E. A. Centrosome aberrations: cause or consequence of cancer progression? Nature Rev. Cancer 2, 815–825 (2002).
    Article CAS Google Scholar
  14. Sluder, G. in Centrosomes in Development and Disease (ed. Erich A. Nigg) 167–189 (Wiley-VCH, Weinheim, 2004).
    Google Scholar
  15. Balczon, R. et al. Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J. Cell Biol. 130, 105–115 (1995).
    Article CAS Google Scholar
  16. Meraldi, P., Lukas, J., Fry, A. M., Bartek, J. & Nigg, E. A. Centrosome duplication in mammalian somatic cells requires E2F and Cdk2- cyclin A. Nature Cell Biol. 1, 88–93 (1999).
    Article CAS Google Scholar
  17. Khodjakov, A. & Rieder, C. L. Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J. Cell Biol. 153, 237–242 (2001).
    Article CAS Google Scholar
  18. Salisbury, J. L., Suino, K. M., Busby, R. & Springett, M. Centrin-2 is required for centriole duplication in mammalian cells. Curr. Biol. 12, 1287–1292 (2002).
    Article CAS Google Scholar
  19. Lacey, K. R., Jackson, P. K. & Stearns, T. Cyclin-dependent kinase control of centrosome duplication. Proc. Natl Acad. Sci. USA 96, 2817–2822 (1999).
    Article CAS Google Scholar
  20. Matsumoto, Y., Hayashi, K. & Nishida, E. Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr. Biol. 9, 429–432 (1999).
    Article CAS Google Scholar
  21. Meraldi, P., Lukas, J., Fry, A. M., Bartek, J. & Nigg, E. A. Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nature Cell Biol. 1, 88–93 (1999).
    Article CAS Google Scholar
  22. Hinchcliffe, E. H., Li, C., Thompson, E. A., Maller, J. L. & Sluder, G. Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts [see comments]. Science 283, 851–854 (1999).
    Article CAS Google Scholar
  23. Warnke, S. et al. Polo-like kinase-2 is required for centriole duplication in mammalian cells. Curr. Biol. 14, 1200–1207 (2004).
    Article CAS Google Scholar
  24. Matsumoto, Y. & Maller, J. L. Calcium, calmodulin, and CaMKII requirement for initiation of centrosome duplication in Xenopus egg extracts. Science 295, 499–502 (2002).
    Article CAS Google Scholar
  25. van Kreeveld, S. & Winey, M. in Centrosomes in Development and Disease (ed. Erich A. Nigg) 43–70 (Wiley-VCH, Weinheim, 2004).
    Google Scholar
  26. O'Connell, K. F. et al. The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 105, 547–558 (2001).
    Article CAS Google Scholar
  27. Ma, S., Charron, J. & Erikson, R. L. Role of Plk2 (Snk) in mouse development and cell proliferation. Mol. Cell Biol. 23, 6936–6943 (2003).
    Article CAS Google Scholar
  28. Bettencourt-Dias, M. et al. Genome-wide survey of protein kinases required for cell cycle progression. Nature 432, 980–987 (2004).
    Article CAS Google Scholar
  29. Chen, Z., Indjeian, V. B., McManus, M., Wang, L. & Dynlacht, B. D. CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev. Cell 3, 339–350 (2002).
    Article CAS Google Scholar
  30. Dammermann, A. et al. Centriole assembly requires both centriolar and pericentriolar material proteins. Dev. Cell 7, 815–829 (2004).
    Article CAS Google Scholar
  31. Leidel, S., Delattre, M., Cerutti, L., Baumer, K. & Gonczy, P. SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nature Cell Biol. 7, 115–125 (2005).
    Article CAS Google Scholar
  32. Blangy, A. et al. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159–1169 (1995).
    Article CAS Google Scholar
  33. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).
    Article CAS Google Scholar

Download references