V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway (original) (raw)
Sorkin, A. & Von Zastrow, M. Signal transduction and endocytosis: close encounters of many kinds. Nature Rev. Mol. Cell. Biol.3, 600–614 (2002). ArticleCAS Google Scholar
Bonifacino, J.S. & Glick, B.S. The mechanisms of vesicle budding and fusion. Cell116, 153–166 (2004). ArticleCAS Google Scholar
Kirchhausen, T. Three ways to make a vesicle. Nature Rev. Mol. Cell. Biol.1, 187–198 (2000). ArticleCAS Google Scholar
Donaldson, J. G. Multiple roles for Arf6: Sorting, structuring, and signaling plasma membrane. J. Biol. Chem.278, 41573–41576 (2003). ArticleCAS Google Scholar
D'Souza-Schorey, C., Li, G., Colombo, M.I. & Stahl, P.D. A regulatory role for ARF6 in receptor-mediated endocytosis. Science267, 1175–1178 (1995). ArticleCAS Google Scholar
Paleotti, O. et al. The small G-protein Arf6GTP recruits the AP-2 adaptor complex to membranes. J. Biol. Chem.280, 21661–21665 (2005). ArticleCAS Google Scholar
Peters, P.J. et al. Characterization of coated vesicles that participate in endocytic recycling. Traffic2, 885–895 (2001). ArticleCAS Google Scholar
Radhakrishna, H., Klausner, R.D. & Donaldson, J.G. Aluminumfluoride stimulates surface protrusions in cells overexpressing the ARF6 GTPase. J. Cell. Biol.134, 935–947 (1996). ArticleCAS Google Scholar
Frank, S.R., Hatfield, J.C. & Casanova, J.E. Remodeling of the actin cytoskeleton is coordinately regulated by protein kinase C and the ADP-ribosylation factor nucleotide exchange factor ARNO. Mol. Biol. Cell.9, 3133–3146 (1998). ArticleCAS Google Scholar
Massenburg, D. et al. Activation of rat brain phospholipase D by ADP-ribosylation factors 1,5, and 6: separation of ADP-ribosylation factor-dependent and oleate-dependent enzymes. Proc. Natl Acad. Sci. USA91, 11718–11722 (1994). ArticleCAS Google Scholar
Santy, L.C. & Casanova, J.E. Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J. Cell. Biol.154, 599–610 (2001). ArticleCAS Google Scholar
Mellman, I. The importance of being acid: the role of acidification in intracellular membrane traffic. J. Exp. Biol.172, 39–45 (1992). CASPubMed Google Scholar
Mellman, I., Fuchs, R. & Helenius, A. Acidification of the endocytic and exocytic pathways. Annu. Rev. Biochem.55, 663–700 (1986). ArticleCAS Google Scholar
Trombetta, E. S., Ebersold, M., Garrett, W., Pypaert, M. & Mellman, I. Activation of lysosomal function during dendritic cell maturation. Science299, 1400–1403 (2003). ArticleCAS Google Scholar
Nishi, T. & Forgac, M. The vacuolar (H+)-ATPases-nature's most versatile proton pumps. Nature Rev. Mol. Cell. Biol.3, 94–103 (2002). ArticleCAS Google Scholar
Sun-Wada, G.H., Wada Y. & Futai, M. Lysosome and lysosome-related organelles responsible for specialized functions in higher organisms, with special emphasis on vacuolar-type proton ATPase. Cell. Struct. Funct.28, 455–463 (2003). ArticleCAS Google Scholar
Sun-Wada, G.H., Wada Y. & Futai, M. Diverse and essential roles of mammalian vacuolar-type proton pump ATPase: toward the physiological understanding of inside acidic compartments. Biochim. Biophys. Acta1658, 106–114 (2004). ArticleCAS Google Scholar
Toyomura, T., Oka, T., Yamaguchi, C., Wada, Y. & Futai, M. Three subunit a isoforms of mouse vacuolar H(+)-ATPase. Preferential expression of the a3 isoform during osteoclast differentiation. J. Biol. Chem.275, 8760–8765 (2000). ArticleCAS Google Scholar
Oka, T. et al. a4, a unique kidney-specific isoform of mouse vacuolar H+ATPase subunit a. J. Biol. Chem.276, 40050–40054 (2001). ArticleCAS Google Scholar
Toyomura, T. et al. From lysosomes to the plasma membrane: localization of vacuolar-type H+ATPase with the a3 isoform during osteoclast differentiation. J. Biol. Chem.278, 22023–22030 (2003). ArticleCAS Google Scholar
Marshansky, V., Fleser, A., Noel, J., Bourgoin, S. & Vinay, P. Isolation of heavy endosomes from dog proximal tubules in suspension. J. Membr. Biol.153, 59–73 (1996). ArticleCAS Google Scholar
Marshansky, V. & Vinay, P. Proton gradient formation in early endosomes from proximal tubules. Biochim. Biophys. Acta1284, 171–180 (1996). Article Google Scholar
Marshansky, V. et al. Identification of ADP-ribosylation factor-6 in brush-border membrane and early endosomes of human kidney proximal tubules. Electrophoresis18, 538–547 (1997). ArticleCAS Google Scholar
Marshansky, V. et al. Receptor-mediated endocytosis in kidney proximal tubules: recent advances and hypothesis. Electrophoresis18, 2661–2676 (1997). ArticleCAS Google Scholar
Maranda, B. et al. Intra-endosomal pH-sensitive recruitment of the Arf-nucleotide exchange factor ARNO and Arf6 from cytoplasm to proximal tubule endosomes. J. Biol. Chem.276, 18540–18550 (2001). ArticleCAS Google Scholar
El Annan, J. et al. Differential expression and targeting of endogenous Arf1 and Arf6 small GTPases in kidney epithelial cell in situ. Am. J. Physiol. (Cell Physiol)286, C768–C778 (2004). ArticleCAS Google Scholar
Marshansky, V., Ausiello, D. A. & Brown, D. Physiological importance of endosomal acidification: potential role in proximal tubulopathies. Curr. Opin. Nephrol. Hypertens.11, 527–537 (2002). Article Google Scholar
Brown, D., & Marshansky, V. in Handbook of ATPases. (eds Futai, M., Wada, Y. & Kaplan, J.H.) 413–442 (Wiley-VCH, New York, 2004). Google Scholar
Zeuzem, S., Zimmermann, P. & Schulz, I. Association of a 19- and a 21-kDa GTP-binding protein to pancreatic microsomal vesicles is regulated by the intravesicular pH established by a vacuolar-type H(+)-ATPase. J. Membr. Biol.125, 231–241 (1992). ArticleCAS Google Scholar
Zeuzem, S. et al. Intravesicular acidification correlates with binding of ADP-ribosylation factor to microsomal membranes. Proc. Natl Acad. Sci. USA89, 6619–6623 (1992). ArticleCAS Google Scholar
Aniento, F., Gu, F., Parton, R. G. & Gruenberg, J. An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes. J. Cell Biol.133, 29–41 (1996). ArticleCAS Google Scholar
Gu, F. & Gruenberg, J. Biogenesis of transport intermediates in the endocytic pathway. FEBS Lett.452, 61–66 (1999). ArticleCAS Google Scholar
Gu, F. & Gruenberg, J. ARF1 regulates pH-dependent COP functions in the early endocytic pathway. J. Biol. Chem.275, 8154–8160 (2000). ArticleCAS Google Scholar
Chardin, P. et al. A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature384, 481–484 (1996). ArticleCAS Google Scholar
Mansour, M., Lee, S. Y. & Pohajdak, B. The N-terminal coiled coil domain of the cytohesin/ARNO family of guanine nucleotide exchange factors interacts with the scaffolding protein CASP. J. Biol. Chem.277, 32302–32309 (2002). ArticleCAS Google Scholar
Santy, L. C., Frank, S. R., Hatfield, J. C. & Casanova, J. E. Regulation of ARNO nucleotide exchange by a PH domain electrostatic switch. Curr. Biol.9, 1173–1176 (1999). ArticleCAS Google Scholar
Sun-Wada, G.H. et al. A proton pump ATPase with testis-specific E1-subunit isoform required for acrosome acidification. J. Biol. Chem.277, 18098–18105 (2002). ArticleCAS Google Scholar
D'Souza-Schorey, C. & Stahl, P.D. Myristoylation is required for the intracellular localization and endocytic function of ARF6. Exp. Cell. Res.221, 153–159 (1995). ArticleCAS Google Scholar
Christensen, E. I. & Birn, H. Megalin and cubilin: multifunctional endocytotic receptors. Nature Rev. Mol. Cell. Biol.3, 258–268 (2002). Article Google Scholar
Wagner, C. A. et al. Renal vacuolar H+-ATPase. Physiol. Rev.84, 1263–1314 (2004). ArticleCAS Google Scholar
Jentsch, T. J., Hubner, C. A. & Fuhrmann, J. C. Ion channels: Function unraveled by dysfunction. Nature Cell. Biol.6, 1039–1047 (2004). ArticleCAS Google Scholar
Baravalle, G. et al. Transferrin recycling and dextran transport to lysosomes is differentially affected by bafilomycin, nocodazole, and low temperature. Cell. Tissue Res.320, 99–113 (2005). ArticleCAS Google Scholar
Donaldson, J.G., Honda, A. & Weigert, R. Multiple activities for Arf1 at the Golgi complex. Biochim. Biophys. Acta1744, 364–373 (2005). ArticleCAS Google Scholar
Shao, E. & Forgac, M. Involvement of the nonhomologous region of subunit A of the yeast V-ATPase in coupling and in vivo dissociation. J. Biol. Chem.279, 48663–48670 (2004). ArticleCAS Google Scholar
Radhakrishna, H. & Donaldson, J.G. ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J. Cell. Biol.139, 49–61 (1997). ArticleCAS Google Scholar
Skinner, M.A. & Wildeman, A.G. Suppression of tumor-related glycosylation of cell surface receptors by the 16-kDa membrane subunit of vacuolar H+ATPase. J. Biol. Chem.276, 48451–48457 (2001). ArticleCAS Google Scholar
Vinay, P., Gougoux, A. & Lemieux, G. Isolation of a pure suspension of rat proximal tubules. Am. J. Physiol.241, F403–F411 (1981). CASPubMed Google Scholar
Sun-Wada, G. H. et al. Mouse proton pump ATPase C subunit isoforms (C2-a and C2-b) specifically expressed in kidney and lung. J. Biol. Chem.278, 44843–44851 (2003). ArticleCAS Google Scholar
Zhai X.Y. et al. Cubilin- and megalin-mediated uptake of albumin in cultured proximal tubule cells of opossum kidney. Kidney Int.58, 1523–1533 (2000). ArticleCAS Google Scholar
Hryciw, D.H. et al. Cofilin interacts with ClC-5 and regulates albumin uptake in proximal tubule cell lines. J. Biol. Chem.278, 40169–40176 (2003). ArticleCAS Google Scholar