Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export (original) (raw)

References

  1. Moore, M. J. From birth to death: The complex lives of eukaryotic mRNAs. Science 309, 1514–1518 (2005).
    Article CAS Google Scholar
  2. York, J. D., Odom, A. R., Murphy, R., Ives, E. B. & Wente, S. R. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285, 96–100 (1999).
    Article CAS Google Scholar
  3. Tseng, S. S. et al. Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export. EMBO J. 17, 2651–2662 (1998).
    Article CAS Google Scholar
  4. Schmitt, C. et al. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN–Nup159p. EMBO J. 18, 4332–4347 (1999).
    Article CAS Google Scholar
  5. Pemberton, L. F. & Paschal, B. M. Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6, 187–198 (2005).
    Article CAS Google Scholar
  6. Rodriguez, M. S., Dargemont, C. & Stutz, F. Nuclear export of RNA. Biol. Cell 96, 639–655 (2004).
    Article CAS Google Scholar
  7. Rocak, S. & Linder, P. DEAD-box proteins: the driving forces behind RNA metabolism. Nature Rev. Mol. Cell Biol. 5, 232–241 (2004).
    Article CAS Google Scholar
  8. Hodge, C. A., Colot, H. V., Stafford, P. & Cole, C. N. Rat8p–Dbp5p is a shuttling transport factor that interacts with Rat7p–Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J. 18, 5778–5788 (1999).
    Article CAS Google Scholar
  9. Estruch, F. & Cole, C. N. An early function during transcription for the yeast mRNA export factor Dbp5p–Rat8p suggested by its genetic and physical interactions with transcription factor IIH components. Mol. Biol. Cell 14, 1664–1676 (2003).
    Article CAS Google Scholar
  10. Zhao, J., Jin, S. B., Bjorkroth, B., Wieslander, L. & Daneholt, B. The mRNA export factor Dbp5 is associated with Balbiani ring mRNP from gene to cytoplasm. EMBO J. 21, 1177–1187 (2002).
    Article CAS Google Scholar
  11. Weirich, C. S., Erzberger, J. P., Berger, J. M. & Weis, K. The N-terminal domain of Nup159 forms a β-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol. Cell 16, 749–760 (2004).
    Article CAS Google Scholar
  12. Murphy, R. & Wente, S. R. An RNA-export mediator with an essential nuclear export signal. Nature 383, 357–360 (1996).
    Article CAS Google Scholar
  13. Kendirgi, F., Barry, D. M., Griffis, E. R., Powers, M. A. & Wente, S. R. An essential role for hGle1 nucleocytoplasmic shuttling in mRNA export. J. Cell Biol. 160, 1029–1040 (2003).
    Article CAS Google Scholar
  14. Odom, A. R., Stahlberg, A., Wente, S. R. & York, J. D. A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287, 2026–2029 (2000).
    Article CAS Google Scholar
  15. York, S. J., Armbruster, B. N., Greenwell, P., Petes, T. D. & York, J. D. Inositol diphosphate signaling regulates telomere length. J. Biol. Chem. 280, 4264–4269 (2005).
    Article CAS Google Scholar
  16. Steger, D. J., Haswell, E. S., Miller, A. L., Wente, S. R. & O'Shea, E. K. Regulation of chromatin remodeling by inositol polyphosphates. Science 299, 114–116 (2003).
    Article CAS Google Scholar
  17. Macbeth, M. R. et al. Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 306, 1534–1539 (2005).
    Article Google Scholar
  18. Miller, A. L., Suntharalingam, M., Johnson, S. L., Audhya, A., Emr, S. D. & Wente, S. R. Cytoplasmic inositol hexakisphosphate production is sufficient for mediating the Gle1 mRNA export pathway. J. Biol. Chem. 279, 51022–51032 (2004).
    Article CAS Google Scholar
  19. Strahm, Y. et al. The RNA export factor Gle1p is located on the cytoplasmic fibrils of the NPC and physically interacts with the FG-nucleoporin Rip1p, the DEAD-box protein Rat8p–Dbp5p and a new protein Ymr 255p. EMBO J. 18, 5761–5777 (1999).
    Article CAS Google Scholar
  20. Rollenhagen, C., Hodge, C. A. & Cole, C. N. The nuclear pore complex and the DEAD box protein Rat8p–Dbp5p have nonessential features which appear to facilitate mRNA export following heat shock. Mol. Cell Biol. 24, 4869–4879 (2004).
    Article CAS Google Scholar
  21. Tseng-Rogenski, S. S. et al. Functional conservation of Dhh1p, a cytoplasmic DExD–H-box protein present in large complexes. Nucleic Acids Res. 31, 4995–5002 (2003).
    Article CAS Google Scholar
  22. Strawn, L. A., Shen, T. & Wente, S. R. The GLFG regions of Nup116p and Nup100p serve as binding sites for both Kap95p and Mex67p at the nuclear pore complex. J. Biol. Chem. 276, 6445–6452 (2001).
    Article CAS Google Scholar
  23. Jankowsky, E., Gross, C. H., Shuman, S. & Pyle, A. M. Active disruption of an RNA-protein interaction by a DExH–D RNA helicase. Science 291, 121–125 (2001).
    Article CAS Google Scholar
  24. Fairman, M. E. et al. Protein displacement by DExH–D 'RNA helicases' without duplex unwinding. Science 304, 730–734 (2004).
    Article CAS Google Scholar
  25. Snay-Hodge, C. A., Colot, H. V., Goldstein, A. L. & Cole, C. N. Dbp5p–Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J. 17, 2663–2676 (1998).
    Article CAS Google Scholar
  26. Lund, M. K. & Guthrie, C. The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol. Cell 20, 645–651 (2005).
    Article CAS Google Scholar
  27. Kendirgi, F., Rexer, D. J., Alcazar-Roman, A. R., Onishko, H. M. & Wente, S. R. Interaction between the shuttling mRNA export factor Gle1 and the nucleoporin hCG1: a conserved mechanism in the export of Hsp70 mRNA. Mol. Biol. Cell 16, 4304–4315 (2005).
    Article CAS Google Scholar
  28. Rayala, H. J., Kendirgi, F., Barry, D. M., Majerus, P. W. & Wente, S. R. The mRNA export factor human Gle1 interacts with the nuclear pore complex protein Nup155. Mol. Cell. Proteomics 3, 145–155 (2004).
    Article CAS Google Scholar
  29. Suntharalingam, M., Alcazar-Roman, A. R. & Wente, S. R. Nuclear export of the yeast mRNA-binding protein Nab2 is linked to a direct interaction with Gfd1 and to Gle1 function. J. Biol. Chem. 279, 35384–35391 (2004).
    Article CAS Google Scholar
  30. Shears, S. B. Assessing the omnipotence of inositol hexakisphosphate. Cell Signal. 13, 151–158 (2001).
    Article CAS Google Scholar
  31. Ives, E. B., Nichols, J., Wente, S. R. & York, J. D. Biochemical and functional characterization of inositol 1,3,4,5,6-pentakisphosphate 2-kinases. J. Biol. Chem. 275, 36575–36583 (2000).
    Article CAS Google Scholar
  32. Shears, S. B. in Signaling by Inositides: A Practical Approach (ed. Hames, B. D.) 134–135 (Oxford Univ. Press, Leeds, 1997).
    Google Scholar
  33. Windgassen, M. et al. Yeast shuttling SR proteins Npl3p, Gbp2p, and Hrb1p are part of the translating mRNPs, and Npl3p can function as a translational repressor. Mol. Cell. Biol. 24, 10479–10491 (2004).
    Article CAS Google Scholar

Download references