- Hu, Y. et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα subunit of IκB kinase. Science 284, 316–320 (1999).
Article CAS Google Scholar
- Li, Q. et al. IKK1-deficient mice exhibit abnormal development of skin and skeleton. Genes Dev. 13, 1322–1328 (1999).
Article CAS Google Scholar
- Takeda, K. et al. Limb and skin abnormalities in mice lacking IKKα. Science 284, 313–316 (1999).
Article CAS Google Scholar
- Hu, Y. et al. IKKα controls formation of the epidermis independently of NF-κB. Nature 410, 710–714 (2001).
Article CAS Google Scholar
- Sil, A. K., Maeda, S., Sano, Y., Roop, D. R. & Karin, M. IαB kinase-α acts in the epidermis to control skeletal and craniofacial morphogenesis. Nature 428, 660–664 (2004).
Article CAS Google Scholar
- Pasparakis, M. et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417, 861–866 (2002).
Article CAS Google Scholar
- Mills, A. A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398, 708–713 (1999).
Article CAS Google Scholar
- Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398, 714–718 (1999).
Article CAS Google Scholar
- Fisher, C. IKKα−/− mice share phenotype with pupoid fetus (pf/pf) and repeated epilation (Er/Er) mutant mice. Trends Genet. 16, 482–484 (2000).
Article CAS Google Scholar
- Furuse, M. et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J. Cell Biol. 156, 1099–1111 (2002).
Article CAS Google Scholar
- Elias, P. M. et al. Desmoglein isoform distribution affects stratum corneum structure and function. J. Cell Biol. 153, 243–249 (2001).
Article CAS Google Scholar
- Madison, K. C. Barrier function of the skin: “la raison d'etre” of the epidermis. J. Invest. Dermatol. 121, 231–241 (2003).
Article CAS Google Scholar
- Zettersten, E. et al. Recessive x-linked ichthyosis: role of cholesterol-sulfate accumulation in the barrier abnormality. J. Invest. Dermatol. 111, 784–790 (1998).
Article CAS Google Scholar
- Gurrieri, S. et al. Differentiation-dependent regulation of secreted phospholipases A2 in murine epidermis. J. Invest. Dermatol. 121, 156–164 (2003).
Article CAS Google Scholar
- Bouwstra, J. A., Honeywell-Nguyen, P. L., Gooris, G. S. & Ponec, M. Structure of the skin barrier and its modulation by vesicular formulations. Prog. Lipid Res. 42, 1–36 (2003).
Article CAS Google Scholar
- Bouwstra, J. A., Gooris, G. S., Dubbelaar, F. E., Weerheim, A. M. & Ponec, M. pH, cholesterol sulfate, and fatty acids affect the stratum corneum lipid organization. J. Investig. Dermatol. Symp. Proc. 3, 69–74 (1998).
Article CAS Google Scholar
- Macheleidt, O., Kaiser, H. W. & Sandhoff, K. Deficiency of epidermal protein-bound omega-hydroxyceramides in atopic dermatitis. J. Invest. Dermatol. 119, 166–173 (2002).
Article CAS Google Scholar
- Larcher, F., Murillas, R., Bolontrade, M., Conti, C. J. & Jorcano, J. L. VEGF/VPF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development. Oncogene 17, 303–311 (1998).
Article CAS Google Scholar
- Li, Q., Lu, Q., Estepa, G. & Verma, I. M. Identification of 14-3-3sigma mutation causing cutaneous abnormality in repeated-epilation mutant mouse. Proc. Natl Acad. Sci. USA 102, 15977–15982 (2005).
Article CAS Google Scholar
- Calleja, C. et al. Genetic and pharmacological evidence that a retinoic acid cannot be the RXR-activating ligand in mouse epidermis keratinocytes. Genes Dev. 20, 1525–1538 (2006).
Article CAS Google Scholar
- Attar, P. S. et al. Inhibition of retinoid signaling in transgenic mice alters lipid processing and disrupts epidermal barrier function. Mol. Endocrinol. 11, 792–800 (1997).
Article CAS Google Scholar
- Imakado, S. et al. Targeting expression of a dominant-negative retinoic acid receptor mutant in the epidermis of transgenic mice results in loss of barrier function. Genes Dev. 9, 317–329 (1995).
Article CAS Google Scholar
- Hughes, P. J. et al. Up-regulation of steroid sulphatase activity in HL60 promyelocytic cells by retinoids and 1α,25-dihydroxyvitamin D3. Biochem. J. 355, 361–371 (2001).
Article CAS Google Scholar
- Antonio, V., Janvier, B., Brouillet, A., Andreani, M. & Raymondjean, M. Oxysterol and 9-cis-retinoic acid stimulate the group IIA secretory phospholipase A2 gene in rat smooth-muscle cells. Biochem. J. 376, 351–360 (2003).
Article CAS Google Scholar
- Kubota, H. et al. Retinoid X receptor α and retinoic acid receptor γ mediate expression of genes encoding tight-junction proteins and barrier function in F9 cells during visceral endodermal differentiation. Exp. Cell Res. 263, 163–172 (2001).
Article CAS Google Scholar
- Humphries, J. D., Parry, E. J., Watson, R. E., Garrod, D. R. & Griffiths, C. E. All-trans retinoic acid compromises desmosome expression in human epidermis. Br. J. Dermatol. 139, 577–584 (1998).
Article CAS Google Scholar
- Weninger, W., Rendl, M., Mildner, M. & Tschachler, E. Retinoids downregulate vascular endothelial growth factor/vascular permeability factor production by normal human keratinocytes. J. Invest. Dermatol. 111, 907–911 (1998).
Article CAS Google Scholar
- Fisher, G. J. & Voorhees, J. J. Molecular mechanisms of retinoid actions in skin. Faseb J. 10, 1002–1013 (1996).
Article CAS Google Scholar
- Giguere, V., Lyn, S., Yip, P., Siu, C. H. & Amin, S. Molecular cloning of cDNA encoding a second cellular retinoic acid-binding protein. Proc. Natl Acad. Sci USA 87, 6233–6237 (1990).
Article CAS Google Scholar
- Nagpal, S. et al. Tazarotene-induced gene 1 (TIG1), a novel retinoic acid receptor-responsive gene in skin. J. Invest. Dermatol. 106, 269–274 (1996).
Article CAS Google Scholar
- Park, K. J., Krishnan, V., O'Malley, B. W., Yamamoto, Y. & Gaynor, R. B. Formation of an IKKα-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol. Cell 18, 71–82 (2005).
Article CAS Google Scholar
- Hoberg, J. E., Yeung, F. & Mayo, M. W. SMRT derepression by the IκB kinase α: a prerequisite to NF-κB transcription and survival. Mol. Cell 16, 245–255 (2004).
Article CAS Google Scholar
- Chen, J. D. & Evans, R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457 (1995).
Article CAS Google Scholar
- Nenci, A. et al. Skin lesion development in a mouse model of incontinentia pigmenti is triggered by NEMO deficiency in epidermal keratinocytes and requires TNF signaling. Hum. Mol. Genet. 15, 531–542 (2006).
Article CAS Google Scholar
- Reichelt, J., Breiden, B., Sandhoff, K. & Magin, T. M. Loss of keratin 10 is accompanied by increased sebocyte proliferation and differentiation. Eur. J. Cell Biol. 83, 747–759 (2004).
Article CAS Google Scholar