p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM (original) (raw)
Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science253, 49–53 (1991). ArticleCAS Google Scholar
Sigal, A. & Rotter, V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res.60, 6788–6793 (2000). CASPubMed Google Scholar
Gudkov, A. Microarray analysis of p53-mediated transcription: multi-thousand piece puzzle or invitation to collective thinking. Cancer Biol. Ther.2, 444–445 (2003). Article Google Scholar
Murphy, M. E. The thousand doors that lead to death: p53-dependent repression and apoptosis. Cancer Biol. Ther.2, 381–382 (2003). Article Google Scholar
Lin, T. et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nature Cell Biol.7, 165–171 (2005). ArticleCAS Google Scholar
Xu, Y. A new role for p53 in maintaining genetic stability in embryonic stem cells, Cell Cycle4, 363–364 (2005). ArticleCAS Google Scholar
Hainaut, P. & Hollstein, M. p53 and human cancer: the first ten thousand mutations. Adv. Cancer Res.77, 81–137 (2000). ArticleCAS Google Scholar
Luo, J. L. et al. Knock-in mice with a chimeric human/murine p53 gene develop normally and show wild-type p53 responses to DNA damaging agents: a new biomedical research tool. Oncogene20, 320–328 (2001). ArticleCAS Google Scholar
Feng, L., Hollstein, M. & Xu, Y. Ser46 phosphorylation regulates p53-dependent apoptosis and replicative senescence. Cell Cycle5, 2812–2819 (2006). ArticleCAS Google Scholar
Hergenhahn, M., Luo, J. L. & Hollstein, M. p53 designer genes for the modern mouse. Cell Cycle3, 738–741 (2004). ArticleCAS Google Scholar
Ben-Porath, I. & Weinberg, R. A. The signals and pathways activating cellular senescence, Int. J. Biochem. Cell Biol.37, 961–976 (2005). ArticleCAS Google Scholar
Olive, K. P. et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell119, 847–860 (2004). ArticleCAS Google Scholar
Liao, M. J. et al. No requirement for V(D)J recombination in _p53_-deficient thymic lymphoma. Mol Cell Biol18, 3495–3501 (1998). ArticleCAS Google Scholar
Bassing, C. H. et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell114, 359–370 (2003). ArticleCAS Google Scholar
Lista, F., Bertness, V., Guidos, C. J., Danska, J. S. & Kirsch, I. R. The absolute number of trans-rearrangements between the TCRG and TCRB loci is predictive of lymphoma risk: a severe combined immune deficiency (SCID) murine model. Cancer Res.57, 4408–4413 (1997). CASPubMed Google Scholar
Kang, J., Bronson, R. T. & Xu, Y. Targeted disruption of NBS1 reveals its roles in mouse development and DNA repair. EMBO J.21, 1447–1455 (2002). ArticleCAS Google Scholar
Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer3, 155–168 (2003). ArticleCAS Google Scholar
Xu, Y. et al. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev.10, 2411–2422 (1996). ArticleCAS Google Scholar
Barlow, C. et al. _Atm_-deficient mice: a paradigm of ataxia telangiectasia. Cell86, 159–171 (1996). ArticleCAS Google Scholar
Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature421, 499–506 (2003). ArticleCAS Google Scholar
Xu, Y. DNA damage: a trigger of innate immunity but a requirement for adaptive immune homeostasis. Nature Rev. Immunol.24, 261–270 (2006). Article Google Scholar
Fernandez-Capetillo, O. et al. DNA damage-induced G2–M checkpoint activation by histone H2AX and 53BP1. Nature Cell Biol.4, 993–997 (2002). ArticleCAS Google Scholar
Kang, J. et al. Functional interaction of H2AX, NBS1, and p53 in ATM-dependent DNA damage responses and tumor suppression. Mol. Cell Biol.25, 661–670 (2005). ArticleCAS Google Scholar
Falck, J., Coates, J. & Jackson, S. P. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature434, 605–611 (2005). ArticleCAS Google Scholar
You, Z., Chahwan, C., Bailis, J., Hunter, T. & Russell, P. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol. Cell Biol.25, 5363–5379 (2005). ArticleCAS Google Scholar
Lee, J. H. & Paull, T. T. ATM activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex. Science308, 551–554 (2005). ArticleCAS Google Scholar
Gaiddon, C., Lokshin, M., Ahn, J., Zhang, T. & Prives, C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol. Cell Biol.21, 1874–1887 (2001). ArticleCAS Google Scholar
Lang, G. A. et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell119, 861–872 (2004). ArticleCAS Google Scholar
Assenmacher, N. & Hopfner, K. P. MRE11/RAD50/NBS1: complex activities. Chromosoma113, 157–166 (2004). ArticleCAS Google Scholar
Chao, C. et al. Cell type- and promoter-specific roles of Ser18 phosphorylation in regulating p53 responses. J. Biol. Chem.278, 41028–41033 (2003). ArticleCAS Google Scholar