Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death (original) (raw)
Zamzami, N. & Kroemer G. The mitochondrion in apoptosis: how Pandora's box opens. Nature Rev. Mol. Cell. Biol.2, 67–71 (2001). ArticleCAS Google Scholar
Crompton, M., Barksby, E., Johnson, N. & Capano, M. Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie84, 143–152 (2002). ArticleCAS Google Scholar
Halestrap, A. P. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem. Soc. Trans.34, 232–237 (2006). ArticleCAS Google Scholar
Rostovtseva, T. K., Tan, W. & Colombini, M. On the role of VDAC in apoptosis: fact and fiction. J. Bioenerg. Biomembr.37, 129–142 (2005). ArticleCAS Google Scholar
Blachly-Dyson. E. & Forte, M. VDAC channels. IUBMB Life52, 113–118 (2001). ArticleCAS Google Scholar
Wu, S., Sampson, M. J., Decker, W. K. & Craigen, W. J. Each mammalian mitochondrial outer membrane porin protein is dispensable: effects on cellular respiration. Biochim. Biophys. Acta.1452, 68–78 (1999). ArticleCAS Google Scholar
Anflous, K., Armstrong, D. D. & Craigen, W. J. Altered mitochondrial sensitivity for ADP and maintenance of creatine-stimulated respiration in oxidative striated muscles from VDAC1-deficient mice. J. Biol. Chem.276, 1954–1960 (2001). ArticleCAS Google Scholar
Sampson, M. J. et al. Immotile sperm and infertility in mice lacking mitochondrial voltage-dependent anion channel type 3. J. Biol. Chem.276, 39206–39212 (2001). ArticleCAS Google Scholar
Krauskopf, A., Eriksson, O., Craigen, W. J., Forte, M. A. & Bernardi, P. Properties of the permeability transition in VDAC1−/− mitochondria. Biochim. Biophys. Acta.1757, 590–595 (2006). ArticleCAS Google Scholar
Sheiko, T. V., Fisher, J. K., Craigen, W. J. & Korsmeyer, S. J. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science301, 513–517 (2003). Article Google Scholar
Banerjee, J. & Ghosh, S. Bax increases the pore size of rat brain mitochondrial voltage-dependent anion channel in the presence of tBid. Biochem. Biophys. Res. Commun.323, 310–314 (2004). ArticleCAS Google Scholar
Shimizu, S., Ide, T., Yanagida, T. & Tsujimoto, Y. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J. Biol. Chem.275, 12321–12325 (2000). ArticleCAS Google Scholar
Sugiyama, T., Shimizu, S., Matsuoka, Y., Yoneda, Y. & Tsujimoto, Y. Activation of mitochondrial voltage-dependent anion channel by a pro-apoptotic BH3-only protein Bim. Oncogene21, 4944–4956 (2002). ArticleCAS Google Scholar
Shimizu, S., Narita, M. & Tsujimoto, Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature399, 483–487 (1999). ArticleCAS Google Scholar
Petronilli, V. et al. Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys. J.76, 725–734 (1999). ArticleCAS Google Scholar
Baines, C. P. et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature434, 658–662 (2005). ArticleCAS Google Scholar
Bernardi, P. et al. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS. J.273, 2077–2099 (2006). ArticleCAS Google Scholar
Halestrap, A. P., McStay, G. P. & Clarke, S. J. The permeability transition pore complex: another view. Biochimie84, 153–166 (2002). ArticleCAS Google Scholar
Nakagawa, T. et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature434, 652–658 (2005). ArticleCAS Google Scholar
Basso, E. et al. Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J. Biol. Chem.280, 18558–18561 (2005). ArticleCAS Google Scholar
Schinzel, A. C. et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl Acad. Sci. USA102, 12005–12010 (2005). ArticleCAS Google Scholar
Kokoszka, J. E. et al. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature427, 461–465 (2004). ArticleCAS Google Scholar
Crompton, M., Virji, S. & Ward, J. M. Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur. J. Biochem.258, 729–735 (1998). ArticleCAS Google Scholar
Woodfield, K., Ruck, A., Brdiczka, D. & Halestrap, A. P. Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem. J.336, 287–290 (1998). ArticleCAS Google Scholar
Vander Heiden, M. G., et al. Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc. Natl Acad. Sci. USA97, 4666–4671 (2000). ArticleCAS Google Scholar
Vander Heiden, M. G. et al. Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J. Biol. Chem.276, 19414–19419 (2001). ArticleCAS Google Scholar
Lai, J. C. et al. A pharmacologic target of G3139 in melanoma cells may be the mitochondrial VDAC. Proc. Natl Acad. Sci. USA103, 7494–7499 (2006). ArticleCAS Google Scholar
Priault, M., Chaudhuri, B., Clow, A., Camougrand, N. & Manon, S. Investigation of bax-induced release of cytochrome c from yeast mitochondria permeability of mitochondrial membranes, role of VDAC and ATP requirement. Eur. J. Biochem.260, 684–691 (1999). ArticleCAS Google Scholar
Polcic, P. & Forte, M. Response of yeast to the regulated expression of proteins in the Bcl-2 family. Biochem. J.374, 393–402 (2003). ArticleCAS Google Scholar
Rostovtseva, T. K. et al. Bid, but not Bax, regulates VDAC channels. J. Biol. Chem.279, 13575–13583 (2004). ArticleCAS Google Scholar
Antonsson, B., Montessuit, S., Lauper, S., Eskes, R. & Martinou, J. C. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem. J.345, 271–278 (2000). ArticleCAS Google Scholar
Kagawa, S., et al. A binary adenoviral vector system for expressing high levels of the proapoptotic gene bax. Gene Ther.7, 75–79 (2000). ArticleCAS Google Scholar
Kaiser, R. A., et al. Targeted inhibition of p38 mitogen-activated protein kinase antagonizes cardiac injury and cell death following ischemia-reperfusion in vivo. J. Biol. Chem.279, 15524–15530 (2004). ArticleCAS Google Scholar