Cables links Robo-bound Abl kinase to N-cadherin-bound β-catenin to mediate Slit-induced modulation of adhesion and transcription (original) (raw)

References

  1. Faissner, A. & Steindler, D. Boundaries and inhibitory molecules in developing neural tissues. Glia 13, 233–254 (1995).
    Article CAS Google Scholar
  2. Margolis, R. U. & Margolis, R. K. Chondroitin sulfate proteoglycans as mediators of axon growth and pathfinding. Cell Tissue Res. 290, 343–348 (1997).
    Article CAS Google Scholar
  3. Brose, K. et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96, 795–806 (1999).
    Article CAS Google Scholar
  4. Balsamo, J., Ernst, H., Zanin, M. K. B., Hoffman, S. & Lilien, J. The interaction of the retina cell surface _N_-acetylgalactosaminylphosphotransferase with an endogenous proteoglycan ligand results in inhibition of cadherin-mediated adhesion. J. Cell Biol. 129, 1391–1403 (1995).
    Article CAS Google Scholar
  5. Balsamo, J. et al. Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of β-catenin. J. Cell Biol. 134, 801–813 (1996).
    Article CAS Google Scholar
  6. Li, H., Leung, T.-C., Hoffman, S., Balsamo, J. & Lilien, J. Coordinate regulation of cadherin and integrin function by the chondroitin sulfate proteoglycan neurocan. J. Cell Biol. 149, 1275–1288 (2000).
    Article CAS Google Scholar
  7. Rhee, J. et al. Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion. Nature Cell Biol. 4, 798–805 (2002).
    Article CAS Google Scholar
  8. Lilien, J., Balsamo, J., Arregui, C. & Xu, G. Turn-off, drop-out: Functional state switching of cadherins. Dev. Dyn. 224, 18–29 (2002).
    Article CAS Google Scholar
  9. Arregui, C., Pathre, P., Lilien, J. & Balsamo, J. The nonreceptor tyrosine kinase fer mediates cross-talk between N-cadherin and β1-integrins. J. Cell Biol. 149, 1263–1274 (2000).
    Article CAS Google Scholar
  10. Brose, K. & Tessier-Lavigne, M. Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr. Opin. Neurobiol. 10, 95–102 (2000).
    Article CAS Google Scholar
  11. Kidd, T. et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92, 205–215 (1998).
    Article CAS Google Scholar
  12. Ringstedt, T. et al. Slit inhibition of retinal axon growth and its role in retinal axon pathfinding and innervation patterns in the diencephalon. J. Neurosci. 20, 4983–4991 (2000).
    Article CAS Google Scholar
  13. Jin, Z. et al. Irx4-mediated regulation of Slit1 expression contributes to the definition of early axonal paths inside the retina. Development 130, 1037–1048 (2003).
    Article CAS Google Scholar
  14. Thompson, H., Camand, O., Barker, D. & Erskine, L. Slit proteins regulate distinct aspects of retinal ganglion cell axon guidance within the dorsal and ventral retina. J. Neurosci. 26, 8082–8091 (2006).
    Article CAS Google Scholar
  15. Bashaw, G. J., Kidd, T., Murray, D., Pawson, T. & Goodman, C. S. Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the roundabout receptor. Cell 101, 703–715 (2000).
    Article CAS Google Scholar
  16. Zukerberg, L. R. et al. Cables links cdk5 and c-Abl and facilitates cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26, 633–646 (2000).
    Article CAS Google Scholar
  17. Tsai, L.-H., Dalalle, I., Caviness, V. S. Jr, Chae, T. & Harlow, E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371, 419–423 (1994).
    Article CAS Google Scholar
  18. Lew, J. et al. A brain-specific activator of cyclin-dependent kinase 5. Nature 371, 423–426 (1994).
    Article CAS Google Scholar
  19. Patrick, G. N. et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615–622 (1999).
    Article CAS Google Scholar
  20. Kwon, Y. T., Gupta, A., Zhou, Y., Nikolic, M. & Tsai, L.-H. Regulation of N-cadherin-mediated adhesion by the p35-Cdk5 kinase. Curr. Biol. 10, 363–372 (2000).
    Article CAS Google Scholar
  21. Kesavapany, S. et al. p35/cdk5 binds and phosphorylates β-catenin and regulates β-catenin/presenilin-1 interaction. Eur. J. Neurosci. 13, 241–247 (2001).
    CAS PubMed Google Scholar
  22. Stein, E. & Tessier-Lavigne, M. Hierarchical organization of guidance receptors: Silencing of netrin attraction by Slit through a Robo–DCC receptor complex. Science 291, 1928–1938 (2001).
    Article CAS Google Scholar
  23. Wu, J. J., Afar, D. E., Phan, H., Witte, O. N. & Lam, K. S. Recognition of multiple substrate motifs by the c-ABL protein tyrosine kinase. Comb. Chem. High Throughput Screen 5, 83–91 (2002).
    Article CAS Google Scholar
  24. Xu, G., Arregui, C., Lilien, J. & Balsamo, J. PTP1B modulates the association of β-catenin with N-cadherin through binding to an adjacent and partially overlapping target site. J. Biol. Chem. 277, 49989–49997 (2002).
    Article CAS Google Scholar
  25. Xu, G. et al. Continuous association of cadherin with β-catenin requires phosphorylation of PTP1B by Fer. J. Cell Sci. 117, 3207–3219 (2004).
    Article CAS Google Scholar
  26. Lilien, J. & Balsamo, J. Rapid reversible changes in cadherin function regulated by tyrosine phosphorylation of β-catenin. Curr. Opin. Cell Biol. 17, 459–465 (2005).
    Article CAS Google Scholar
  27. Roura, S., Miravet, S., Piedra, J., de Herreros, A. G. & Dunach, M. Regulation of E-cadherin/catenin association by tyrosine phosphorylation. J. Biol. Chem. 274, 36734–36740 (1999).
    Article CAS Google Scholar
  28. Miravet, S. et al. Tyrosine phosphorylation of plakoglobin causes contrary effects on its association with desmosomes and adherens junction components and modulates β-catenin-mediated transcription. Mol. Cell. Biol. 23, 7391–7402 (2003).
    Article CAS Google Scholar
  29. Huber, A. H. & Weis, W. I. The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. Cell 105, 391–402 (2001).
    Article CAS Google Scholar
  30. Gao, C. Y., Stepp, M. A., Fariss, R. & Zelenka, P. Cdk5 regulates activation and localization of Src during corneal epithelial wound closure. J. Cell Sci. 117, 4089–4098 (2004).
    Article CAS Google Scholar
  31. Hsouna, A., Kim, Y. S. & VanBerkum, M. F. Abelson tyrosine kinase is required to transduce midline repulsive cues. J. Neurobiol. 57, 15–30 (2003).
    Article CAS Google Scholar
  32. Piedra, J. et al. p120 catenin-associated Fer and Fyn tyrosine kinases regulate β-catenin Tyr-142 phosphorylation and β-catenin–α-catenin interaction. Mol. Cell Biol. 23, 2287–2297 (2003).
    Article CAS Google Scholar
  33. Brembeck, F. H. et al. Essential role of BCL9-2 in the switch between β-catenin's adhesive and transcriptional functions. Genes Dev. 18, 2225–2230 (2004).
    Article CAS Google Scholar
  34. Brembeck, F. H., Rosario, M. & Birchmeier, W. Balancing cell adhesion and Wnt signaling, the key role of β-catenin. Curr. Opin. Genet. Dev. 16, 51–59 (2006).
    Article CAS Google Scholar
  35. Monga, S. P. et al. Hepatocyte growth factor induces Wnt-independent nuclear translocation of β-catenin after Met-β-catenin dissociation in hepatocytes. Cancer Res. 62, 2064–2071 (2002).
    CAS PubMed Google Scholar
  36. Sampietro, J. et al. Crystal structure of a β-catenin/BCL9/Tcf4 complex. Mol. Cell 24, 293–300 (2006).
    Article CAS Google Scholar
  37. Hoffmans, R. & Basler, K. BCL9-2 binds Arm/β-catenin in a Tyr142-independent manner and requires Pygopus for its function in Wg/Wnt signaling. Mech. Dev. 124, 59–67 (2007).
    Article CAS Google Scholar
  38. Kikuchi, A., Kishida, S. & Yamamoto, H. Regulation of Wnt signaling by protein-protein interaction and post-translational modifications. Exp. Mol. Med. 28, 1–10 (2006).
    Article Google Scholar
  39. Behrens, J. & Lustig, B. The Wnt connection to tumorigenesis. Int. J. Dev. Biol. 8, 477–487 (2004).
    Article Google Scholar
  40. Gottardi, C. J. & Gumbiner, B. M. Distinct molecular forms of β-catenin are targeted to adhesive or transcriptional complexes. J. Cell Biol. 167, 339–349 (2004).
    Article CAS Google Scholar

Download references