Cables links Robo-bound Abl kinase to N-cadherin-bound β-catenin to mediate Slit-induced modulation of adhesion and transcription (original) (raw)
References
Faissner, A. & Steindler, D. Boundaries and inhibitory molecules in developing neural tissues. Glia13, 233–254 (1995). ArticleCAS Google Scholar
Margolis, R. U. & Margolis, R. K. Chondroitin sulfate proteoglycans as mediators of axon growth and pathfinding. Cell Tissue Res.290, 343–348 (1997). ArticleCAS Google Scholar
Brose, K. et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell96, 795–806 (1999). ArticleCAS Google Scholar
Balsamo, J., Ernst, H., Zanin, M. K. B., Hoffman, S. & Lilien, J. The interaction of the retina cell surface _N_-acetylgalactosaminylphosphotransferase with an endogenous proteoglycan ligand results in inhibition of cadherin-mediated adhesion. J. Cell Biol.129, 1391–1403 (1995). ArticleCAS Google Scholar
Balsamo, J. et al. Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of β-catenin. J. Cell Biol.134, 801–813 (1996). ArticleCAS Google Scholar
Li, H., Leung, T.-C., Hoffman, S., Balsamo, J. & Lilien, J. Coordinate regulation of cadherin and integrin function by the chondroitin sulfate proteoglycan neurocan. J. Cell Biol.149, 1275–1288 (2000). ArticleCAS Google Scholar
Rhee, J. et al. Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion. Nature Cell Biol.4, 798–805 (2002). ArticleCAS Google Scholar
Lilien, J., Balsamo, J., Arregui, C. & Xu, G. Turn-off, drop-out: Functional state switching of cadherins. Dev. Dyn.224, 18–29 (2002). ArticleCAS Google Scholar
Arregui, C., Pathre, P., Lilien, J. & Balsamo, J. The nonreceptor tyrosine kinase fer mediates cross-talk between N-cadherin and β1-integrins. J. Cell Biol.149, 1263–1274 (2000). ArticleCAS Google Scholar
Brose, K. & Tessier-Lavigne, M. Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr. Opin. Neurobiol.10, 95–102 (2000). ArticleCAS Google Scholar
Kidd, T. et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell92, 205–215 (1998). ArticleCAS Google Scholar
Ringstedt, T. et al. Slit inhibition of retinal axon growth and its role in retinal axon pathfinding and innervation patterns in the diencephalon. J. Neurosci.20, 4983–4991 (2000). ArticleCAS Google Scholar
Jin, Z. et al. Irx4-mediated regulation of Slit1 expression contributes to the definition of early axonal paths inside the retina. Development130, 1037–1048 (2003). ArticleCAS Google Scholar
Thompson, H., Camand, O., Barker, D. & Erskine, L. Slit proteins regulate distinct aspects of retinal ganglion cell axon guidance within the dorsal and ventral retina. J. Neurosci.26, 8082–8091 (2006). ArticleCAS Google Scholar
Bashaw, G. J., Kidd, T., Murray, D., Pawson, T. & Goodman, C. S. Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the roundabout receptor. Cell101, 703–715 (2000). ArticleCAS Google Scholar
Zukerberg, L. R. et al. Cables links cdk5 and c-Abl and facilitates cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron26, 633–646 (2000). ArticleCAS Google Scholar
Tsai, L.-H., Dalalle, I., Caviness, V. S. Jr, Chae, T. & Harlow, E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature371, 419–423 (1994). ArticleCAS Google Scholar
Lew, J. et al. A brain-specific activator of cyclin-dependent kinase 5. Nature371, 423–426 (1994). ArticleCAS Google Scholar
Patrick, G. N. et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature402, 615–622 (1999). ArticleCAS Google Scholar
Kwon, Y. T., Gupta, A., Zhou, Y., Nikolic, M. & Tsai, L.-H. Regulation of N-cadherin-mediated adhesion by the p35-Cdk5 kinase. Curr. Biol.10, 363–372 (2000). ArticleCAS Google Scholar
Kesavapany, S. et al. p35/cdk5 binds and phosphorylates β-catenin and regulates β-catenin/presenilin-1 interaction. Eur. J. Neurosci.13, 241–247 (2001). CASPubMed Google Scholar
Stein, E. & Tessier-Lavigne, M. Hierarchical organization of guidance receptors: Silencing of netrin attraction by Slit through a Robo–DCC receptor complex. Science291, 1928–1938 (2001). ArticleCAS Google Scholar
Wu, J. J., Afar, D. E., Phan, H., Witte, O. N. & Lam, K. S. Recognition of multiple substrate motifs by the c-ABL protein tyrosine kinase. Comb. Chem. High Throughput Screen5, 83–91 (2002). ArticleCAS Google Scholar
Xu, G., Arregui, C., Lilien, J. & Balsamo, J. PTP1B modulates the association of β-catenin with N-cadherin through binding to an adjacent and partially overlapping target site. J. Biol. Chem.277, 49989–49997 (2002). ArticleCAS Google Scholar
Xu, G. et al. Continuous association of cadherin with β-catenin requires phosphorylation of PTP1B by Fer. J. Cell Sci.117, 3207–3219 (2004). ArticleCAS Google Scholar
Lilien, J. & Balsamo, J. Rapid reversible changes in cadherin function regulated by tyrosine phosphorylation of β-catenin. Curr. Opin. Cell Biol.17, 459–465 (2005). ArticleCAS Google Scholar
Roura, S., Miravet, S., Piedra, J., de Herreros, A. G. & Dunach, M. Regulation of E-cadherin/catenin association by tyrosine phosphorylation. J. Biol. Chem.274, 36734–36740 (1999). ArticleCAS Google Scholar
Miravet, S. et al. Tyrosine phosphorylation of plakoglobin causes contrary effects on its association with desmosomes and adherens junction components and modulates β-catenin-mediated transcription. Mol. Cell. Biol.23, 7391–7402 (2003). ArticleCAS Google Scholar
Huber, A. H. & Weis, W. I. The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. Cell105, 391–402 (2001). ArticleCAS Google Scholar
Gao, C. Y., Stepp, M. A., Fariss, R. & Zelenka, P. Cdk5 regulates activation and localization of Src during corneal epithelial wound closure. J. Cell Sci.117, 4089–4098 (2004). ArticleCAS Google Scholar
Hsouna, A., Kim, Y. S. & VanBerkum, M. F. Abelson tyrosine kinase is required to transduce midline repulsive cues. J. Neurobiol.57, 15–30 (2003). ArticleCAS Google Scholar
Piedra, J. et al. p120 catenin-associated Fer and Fyn tyrosine kinases regulate β-catenin Tyr-142 phosphorylation and β-catenin–α-catenin interaction. Mol. Cell Biol.23, 2287–2297 (2003). ArticleCAS Google Scholar
Brembeck, F. H. et al. Essential role of BCL9-2 in the switch between β-catenin's adhesive and transcriptional functions. Genes Dev.18, 2225–2230 (2004). ArticleCAS Google Scholar
Brembeck, F. H., Rosario, M. & Birchmeier, W. Balancing cell adhesion and Wnt signaling, the key role of β-catenin. Curr. Opin. Genet. Dev.16, 51–59 (2006). ArticleCAS Google Scholar
Monga, S. P. et al. Hepatocyte growth factor induces Wnt-independent nuclear translocation of β-catenin after Met-β-catenin dissociation in hepatocytes. Cancer Res.62, 2064–2071 (2002). CASPubMed Google Scholar
Sampietro, J. et al. Crystal structure of a β-catenin/BCL9/Tcf4 complex. Mol. Cell24, 293–300 (2006). ArticleCAS Google Scholar
Hoffmans, R. & Basler, K. BCL9-2 binds Arm/β-catenin in a Tyr142-independent manner and requires Pygopus for its function in Wg/Wnt signaling. Mech. Dev.124, 59–67 (2007). ArticleCAS Google Scholar
Kikuchi, A., Kishida, S. & Yamamoto, H. Regulation of Wnt signaling by protein-protein interaction and post-translational modifications. Exp. Mol. Med.28, 1–10 (2006). Article Google Scholar
Behrens, J. & Lustig, B. The Wnt connection to tumorigenesis. Int. J. Dev. Biol.8, 477–487 (2004). Article Google Scholar
Gottardi, C. J. & Gumbiner, B. M. Distinct molecular forms of β-catenin are targeted to adhesive or transcriptional complexes. J. Cell Biol.167, 339–349 (2004). ArticleCAS Google Scholar