Phosphoregulation and depolymerization-driven movement of the Dam1 complex do not require ring formation (original) (raw)

References

  1. Pinsky, B. A., Kotwaliwale, C. V., Tatsutani, S. Y., Breed, C. A. & Biggins, S. Glc7/protein phosphatase 1 regulatory subunits can oppose the Ipl1/aurora protein kinase by redistributing Glc7. Mol. Cell Biol. 26, 2648–2660 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  2. Tanaka, K., Kitamura, E., Kitamura, Y. & Tanaka, T. U. Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles. J. Cell Biol. 178, 269–281 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  3. Franco, A., Meadows, J. C. & Millar, J. B. The Dam1/DASH complex is required for the retrieval of unclustered kinetochores in fission yeast. J. Cell Sci. 120, 3345–3351 (2007).
    Article CAS PubMed Google Scholar
  4. Cheeseman, I. M., Enquist-Newman, M., Muller-Reichert, T., Drubin, D. G. & Barnes, G. Mitotic spindle integrity and kinetochore function linked by the Duo1p/Dam1p complex. J. Cell Biol. 152, 197–212 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  5. He, X., Rines, D. R., Espelin, C. W. & Sorger, P. K. Molecular analysis of kinetochore–microtubule attachment in budding yeast. Cell 106, 195–206 (2001).
    Article CAS PubMed Google Scholar
  6. Janke, C., Ortiz, J., Tanaka, T. U., Lechner, J. & Schiebel, E. Four new subunits of the Dam1-Duo1 complex reveal novel functions in sister kinetochore biorientation. EMBO J. 21, 181–193 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  7. Jones, M. H., He, X., Giddings, T. H. & Winey, M. Yeast Dam1p has a role at the kinetochore in assembly of the mitotic spindle. Proc. Natl Acad. Sci. USA 98, 13675–13680 (2001).
    Article CAS PubMed Google Scholar
  8. Li, Y. et al. The mitotic spindle is required for loading of the DASH complex onto the kinetochore. Genes Dev. 16, 183–197 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  9. Cheeseman, I.M. et al. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111, 163–172 (2002).
    Article CAS PubMed Google Scholar
  10. Shimogawa, M. M. et al. Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase. Curr. Biol. 16, 1489–1501 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  11. Asbury, C. L., Gestaut, D. R., Powers, A. F., Franck, A. D. & Davis, T. N. The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. Proc. Natl Acad. Sci. USA 103, 9873–9878 (2006).
    Article CAS PubMed Google Scholar
  12. Westermann, S. et al. Formation of a dynamic kinetochore– microtubule interface through assembly of the Dam1 ring complex. Mol. Cell 17, 277–290 (2005).
    Article CAS PubMed Google Scholar
  13. Westermann, S. et al. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440, 565–569 (2006).
    Article CAS PubMed Google Scholar
  14. Franck, A.D. et al. Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis. Nature Cell Biol. 9, 832–837 (2007).
    Article CAS PubMed Google Scholar
  15. Miranda, J. J., De Wulf, P., Sorger, P. K. & Harrison, S. C. The yeast DASH complex forms closed rings on microtubules. Nature Struct. Mol. Biol. 12, 138–143 (2005).
    Article CAS Google Scholar
  16. Miranda, J. J., King, D. S. & Harrison, S. C. Protein arms in the kinetochore–microtubule interface of the yeast DASH complex. Mol. Biol. Cell 18, 2503–2510 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  17. Wang, H.W. et al. Architecture of the Dam1 kinetochore ring complex and implications for microtubule-driven assembly and force-coupling mechanisms. Nature Struct. Mol. Biol. 14, 721–726 (2007).
    Article Google Scholar
  18. Howard, J. & Hyman, A. A. Microtubule polymerases and depolymerases. Curr. Opin. Cell Biol. 19, 31–35 (2007).
    Article CAS PubMed Google Scholar
  19. Westermann, S., Drubin, D. G. & Barnes, G. Structures and functions of yeast kinetochore complexes. Ann. Rev. Biochem. 76, 563–591 (2007).
    Article CAS PubMed Google Scholar
  20. Karp, G. Cell and Molecular Biology, 5th edn (John Wiley & Sons, Hoboken, 2007).
    Google Scholar
  21. Hill, T. L. Theoretical problems related to the attachment of microtubules to kinetochores. Proc. Natl Acad. Sci. USA 82, 4404–4408 (1985).
    Article CAS PubMed Google Scholar
  22. Koshland, D. E., Mitchison, T. J. & Kirschner, M. W. Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 331, 499–504 (1988).
    Article CAS PubMed Google Scholar
  23. Molodtsov, M. I., Grishchuk, E. L., Efremov, A. K., McIntosh, J. R. & Ataullakhanov, F. I. Force production by depolymerizing microtubules: a theoretical study. Proc. Natl Acad. Sci. US A 102, 4353–4358 (2005).
    Article CAS Google Scholar
  24. Efremov, A., Grishchuk, E. L., McIntosh, J. R. & Ataullakhanov, F. I. In search of an optimal ring to couple microtubule depolymerization to processive chromosome motions. Proc. Natl Acad. Sci. USA 104, 19017–19022 (2007).
    Article CAS PubMed Google Scholar
  25. Dong, Y., Vanden Beldt, K. J., Meng, X., Khodjakov, A. & McEwen, B. F. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nature Cell Biol. 9, 516–522 (2007).
    Article PubMed Google Scholar
  26. McIntosh, J. R. Rings around kinetochore microtubules in yeast. Nature Struct. Mol. Biol. 12, 210–212 (2005).
    Article CAS Google Scholar
  27. Enquist-Newman, M. et al. Dad1p, third component of the Duo1p/Dam1p complex involved in kinetochore function and mitotic spindle integrity. Mol. Biol. Cell 12, 2601–2613 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  28. Cheeseman, I.M. et al. Implication of a novel multiprotein Dam1p complex in outer kinetochore function. J. Cell Biol. 155, 1137–1145 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  29. Cantor, C. R. & Schimmel, P. R. Biophysical Chemistry, Vol. I, II and III. (W. H. Freeman & Company, San Francisco; 1980).
    Google Scholar
  30. McGhee, J. D. & von Hippel, P. H. Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol. 86, 469–489 (1974).
    Article CAS PubMed Google Scholar
  31. Pinsky, B. A., Kung, C., Shokat, K. M. & Biggins, S. The Ipl1–Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores. Nature Cell Biol. 8, 78–83 (2006).
    Article CAS PubMed Google Scholar
  32. Shang, C. et al. Kinetochore protein interactions and their regulation by the Aurora kinase Ipl1p. Mol. Biol. Cell 14, 3342–3355 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  33. Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006).
    Article CAS PubMed Google Scholar
  34. Davis, T. N. & Wordeman, L. Rings, bracelets, sleeves, and chevrons: new structures of kinetochore proteins. Trends Cell Biol. 17, 377–382 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  35. Gunawardane, R. N., Zheng, Y., Oegema, K. & Wiese, C. Purification and reconstitution of Drosophilia γ-tubulin complexes. in Methods in Cell Biology, Vol. 67 (eds. Palazzo, R. E.& Davis, T. N.) 1–26 (Academic Press, San Diego; 2001).
    Google Scholar
  36. Press, W. H., Vetterling, W. T., Teukolsky, S. A. & Flannery, B. P. Numerical Recipes in C: The Art of Scientific Computing, 2nd edn (Cambridge University Press, Cambridge, 1996).
    Google Scholar
  37. Hill, A. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 40, iv–vii (1910).
    Google Scholar
  38. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).
    Article CAS PubMed Google Scholar

Download references