Scaffolding function of PAK in the PDK1–Akt pathway (original) (raw)

References

  1. Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).
    Article CAS PubMed Google Scholar
  2. Nobes, C. D., Hawkins, P., Stephens, L. & Hall, A. Activation of the small GTP-binding proteins rho and rac by growth factor receptors. J. Cell Sci. 108, 225–233 (1995).
    CAS PubMed Google Scholar
  3. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).
    Article CAS PubMed Google Scholar
  4. Bokoch, G. M. Biology of the p21-activated kinases. Annu. Rev. Biochem. 72, 743–781 (2003).
    Article CAS PubMed Google Scholar
  5. Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S. & Lim, L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367, 40–46 (1994).
    Article CAS PubMed Google Scholar
  6. Frost, J. A., Khokhlatchev, A., Stippec, S., White, M. A. & Cobb, M. H. Differential effects of PAK1-activating mutations reveal activity-dependent and -independent effects on cytoskeletal regulation. J. Biol. Chem. 273, 28191–28198 (1998).
    Article CAS PubMed Google Scholar
  7. Sells, M. A., Boyd, J. T. & Chernoff, J. p21-activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J. Cell Biol. 145, 837–849 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  8. Higuchi, M., Masuyama, N., Fukui, Y., Suzuki, A. & Gotoh, Y. Akt mediates Rac/Cdc42-regulated cell motility in growth factor-stimulated cells and in invasive PTEN knockout cells. Curr. Biol. 11, 1958–1962 (2001).
    Article CAS PubMed Google Scholar
  9. Alessi, D. R. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr. Biol. 7, 261–269 (1997).
    Article CAS PubMed Google Scholar
  10. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).
    Article CAS PubMed Google Scholar
  11. Kohn, A. D., Takeuchi, F. & Roth, R. A. Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. J. Biol. Chem. 271, 21920–21926 (1996).
    Article CAS PubMed Google Scholar
  12. Owen, D., Mott, H. R., Laue, E. D. & Lowe, P. N. Residues in Cdc42 that specify binding to individual CRIB effector proteins. Biochemistry 39, 1243–1250 (2000).
    Article CAS PubMed Google Scholar
  13. Gorlach, A., BelAiba, R. S., Hess, J. & Kietzmann, T. Thrombin activates the p21-activated kinase in pulmonary artery smooth muscle cells. Role in tissue factor expression. Thromb. Haemost. 93, 1168–1175 (2005).
    Article PubMed Google Scholar
  14. Mao, K. et al. Regulation of Akt/PKB activity by P21-activated kinase in cardiomyocytes. J. Mol. Cell. Cardiol. 44, 429–344 (2008).
    Article CAS PubMed Google Scholar
  15. Scheid, M. P., Marignani, P. A. & Woodgett, J. R. Multiple phosphoinositide 3-kinase-dependent steps in activation of protein kinase B. Mol. Cell. Biol. 22, 6247–6260 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  16. King, C. C. et al. p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). J. Biol. Chem. 275, 41201–41209 (2000).
    Article CAS PubMed Google Scholar
  17. Wang, Q. et al. Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts. Mol. Cell. Biol. 19, 4008–4018 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  18. Reeder, M. K., Serebriiskii, I. G., Golemis, E. A. & Chernoff, J. Analysis of small GTPase signaling pathways using p21-activated kinase mutants that selectively couple to Cdc42. J. Biol. Chem. 276, 40606–40613 (2001).
    Article CAS PubMed Google Scholar
  19. Joneson, T., White, M. A., Wigler, M. H. & Bar-Sagi, D. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science 271, 810–812 (1996).
    Article CAS PubMed Google Scholar
  20. Lamarche, N. et al. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87, 519–529 (1996).
    Article CAS PubMed Google Scholar
  21. Irie, H. Y. et al. Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial–mesenchymal transition. J. Cell Biol. 171, 1023–1034 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  22. Yoeli-Lerner, M. et al. Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol. Cell 20, 539–550 (2005).
    Article CAS PubMed Google Scholar
  23. Zhou, G. L. et al. Opposing roles for Akt1 and Akt2 in Rac/Pak signaling and cell migration. J. Biol. Chem. 281, 36443–36453 (2006).
    Article CAS PubMed Google Scholar
  24. Brazil, D. P., Yang, Z. Z. & Hemmings, B. A. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem. Sci. 29, 233–242 (2004).
    Article CAS PubMed Google Scholar
  25. Woodgett, J. R. Recent advances in the protein kinase B signaling pathway. Curr. Opin. Cell Biol. 17, 150–157 (2005).
    Article CAS PubMed Google Scholar
  26. Zhou, G. L. et al. Akt phosphorylation of serine 21 on Pak1 modulates Nck binding and cell migration. Mol. Cell. Biol. 23, 8058–8069 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  27. Higuchi, M., Onishi, K., Masuyama, N. & Gotoh, Y. The phosphatidylinositol-3 kinase (PI(3)K)–Akt pathway suppresses neurite branch formation in NGF-treated PC12 cells. Genes Cells 8, 657–669 (2003).
    Article CAS PubMed Google Scholar
  28. Lei, M. et al. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102, 387–397 (2000).
    Article CAS PubMed Google Scholar
  29. Jakobi, R., McCarthy, C. C. & Koeppel, M. A. Mammalian expression vectors for epitope tag fusion proteins that are toxic in E. coli. Biotechniques 33, 1218–1222 (2002).
    Article CAS PubMed Google Scholar
  30. Lei, M., Robinson, M. A. & Harrison, S. C. The active conformation of the PAK1 kinase domain. Structure 13, 769–778 (2005).
    Article CAS PubMed Google Scholar

Download references