Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers (original) (raw)

References

  1. Stupp, R., et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New Engl. J. Med. 352, 987–996 (2005).
    Article CAS Google Scholar
  2. Mazzocca, A., et al. A secreted form of ADAM9 promotes carcinoma invasion through tumor-stromal interactions. Cancer Res. 65, 4728–4738 (2005).
    Article CAS Google Scholar
  3. Muerkoster, S., et al. Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1β. Cancer Res. 64, 1331–1337 (2004).
    Article Google Scholar
  4. Singer, C. F., et al. Differential gene expression profile in breast cancer-derived stromal fibroblasts. Breast Cancer Res. Treat. 110, 273–281 (2008).
    Article CAS Google Scholar
  5. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).
    Article CAS Google Scholar
  6. Gabrilovich, D. I. Molecular mechanisms and therapeutic reversal of immune suppression in cancer. Curr. Cancer Drug Targets 7, 1 (2007).
    CAS PubMed Google Scholar
  7. Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A. & Ratajczak, M. Z. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20, 1487–1495 (2006).
    Article CAS Google Scholar
  8. Thery, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nature Rev. Immunol. 2, 569–579 (2002).
    Article CAS Google Scholar
  9. Pan, B. T. & Johnstone, R. M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–978 (1983).
    Article CAS Google Scholar
  10. Booth, A. M., et al. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J. Cell Biol. 172, 923–935 (2006).
    Article CAS Google Scholar
  11. Greco, V., Hannus, M. & Eaton, S. Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 106, 633–645 (2001).
    Article CAS Google Scholar
  12. Delves, G. H., Stewart, A. B., Cooper, A. J. & Lwaleed, B. A. Prostasomes, angiogenesis, and tissue factor. Semin. Thromb. Hemost. 33, 75–79 (2007).
    Article CAS Google Scholar
  13. Mack, M., et al. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nature Med. 6, 769–775 (2000).
    Article CAS Google Scholar
  14. Al-Nedawi, K., et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nature Cell Biol. 10, 619–624 (2008).
    Article CAS Google Scholar
  15. Valadi, H., et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biol. 9, 654–659 (2007).
    Article CAS Google Scholar
  16. Baj-Krzyworzeka, M., et al. Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol. Immunother. 55, 808–818 (2006).
    Article CAS Google Scholar
  17. Chaput, N., Taieb, J., Andre, F. & Zitvogel, L. The potential of exosomes in immunotherapy. Exp. Opin. Biol. Ther. 5, 737–747 (2005).
    Article CAS Google Scholar
  18. Wieckowski, E. & Whiteside, T. L. Human tumor-derived vs dendritic cell-derived exosomes have distinct biologic roles and molecular profiles. Immunol. Res. 36, 247–254 (2006).
    Article CAS Google Scholar
  19. Clayton, A., Mitchell, J. P., Court, J., Mason, M. D. & Tabi, Z. Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res. 67, 7458–7466 (2007).
    Article CAS Google Scholar
  20. Ginestra, A., et al. The amount and proteolytic content of vesicles shed by human cancer cell lines correlates with their in vitro invasiveness. Anticancer Res. 18, 3433–3437 (1998).
    CAS PubMed Google Scholar
  21. Liu, C., et al. Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J. Immunol. 176, 1375–1385 (2006).
    Article CAS Google Scholar
  22. Janowska-Wieczorek, A., et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int. J. Cancer 113, 752–760 (2005).
    Article CAS Google Scholar
  23. Millimaggi, D., et al. Tumor vesicle-associated CD147 modulates the angiogenic capability of endothelial cells. Neoplasia 9, 349–357 (2007).
    Article CAS Google Scholar
  24. Tannous, B. A., Kim, D. E., Fernandez, J. L., Weissleder, R. & Breakefield, X. O. Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol. Ther. 11, 435–443 (2005).
    Article CAS Google Scholar
  25. Pelloski, C. E., et al. Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma. J. Clin. Oncol. 25, 2288–2294 (2007).
    Article CAS Google Scholar
  26. Nishikawa, R., et al. Immunohistochemical analysis of the mutant epidermal growth factor, δEGFR, in glioblastoma. Brain Tumor Pathol. 21, 53–56 (2004).
    Article CAS Google Scholar
  27. Chan, J. A., Krichevsky, A. M. & Kosik, K. S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65, 6029–6033 (2005).
    Article CAS Google Scholar
  28. Brat, D. J., Bellail, A. C. & Van Meir, E. G. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-oncology 7, 122–133 (2005).
    Article CAS Google Scholar
  29. Eberle, K., et al. The expression of angiogenin in tissue samples of different brain tumours and cultured glioma cells. Anticancer Res. 20, 1679–1684 (2000).
    CAS PubMed Google Scholar
  30. Rolhion, C., et al. Interleukin-6 overexpression as a marker of malignancy in human gliomas. J. Neurosurg. 94, 97–101 (2001).
    Article CAS Google Scholar
  31. Taraboletti, G., et al. Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH. Neoplasia 8, 96–103 (2006).
    Article CAS Google Scholar
  32. Xu, Z. P., Tsuji, T., Riordan, J. F. & Hu, G. F. Identification and characterization of an angiogenin-binding DNA sequence that stimulates luciferase reporter gene expression. Biochemistry 42, 121–128 (2003).
    Article CAS Google Scholar
  33. Kislauskis, E. H., Zhu, X. & Singer, R. H. Sequences responsible for intracellular localization of β-actin messenger RNA also affect cell phenotype. J. Cell Biol. 127, 441–451 (1994).
    Article CAS Google Scholar
  34. Mallardo, M., et al. Isolation and characterization of Staufen-containing ribonucleoprotein particles from rat brain. Proc. Natl Acad. Sci. USA 100, 2100–2105 (2003).
    Article CAS Google Scholar
  35. Sonabend, A. M., Dana, K. & Lesniak, M. S. Targeting epidermal growth factor receptor variant III: a novel strategy for the therapy of malignant glioma. Exp. Rev. Anticancer Ther. 7, S45–S50 (2007).
    Article CAS Google Scholar
  36. Mellinghoff, I. K., et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. New Engl. J. Med. 353, 2012–2024 (2005).
    Article CAS Google Scholar
  37. Badr, C. E., Hewett, J. W., Breakefield, X. O. & Tannous, B. A. A highly sensitive assay for monitoring the secretory pathway and ER stress. PLoS ONE 2, e571 (2007).
    Article Google Scholar

Download references