Arginine methylation regulates the p53 response (original) (raw)
References
Levine, A. J. (p53, the cellular gatekeeper for growth and division. Cell88, 323–331 1997). ArticleCAS Google Scholar
Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer2, 594–604 (2002). ArticleCAS Google Scholar
Levine, A. J., Hu, W. & Feng, Z. The P53 pathway: what questions remain to be explored? Cell Death Differ.13, 1027–1036 (2006). ArticleCAS Google Scholar
Coutts, A. S. & La Thangue, N. B. The p53 response: emerging levels of co-factor complexity. Biochem. Biophys. Res. Commun.331, 778–785 (2005). ArticleCAS Google Scholar
Shikama, N. et al. A novel cofactor for p300 that regulates the p53 response. Mol. Cell4, 365–376 (1999). ArticleCAS Google Scholar
Coutts, A. S., Boulahbel, H., Graham, A. & La Thangue, N. B. Mdm2 targets the p53 transcription cofactor JMY for degradation. EMBO Rep.8, 84–90 (2007). ArticleCAS Google Scholar
Demonacos, C., Krstic-Demonacos, M. & La Thangue, N. B. A TPR motif cofactor contributes to p300 activity in the p53 response. Mol. Cell8, 71–84 (2001). ArticleCAS Google Scholar
Demonacos, C., Krstic-Demonacos, M., Smith, L., Xu, D., O'Connor, D. P., Jansson, M. & La Thangue, N. B. A new effector pathway links ATM kinase with the DNA damage response. Nature Cell Biol.6, 968–976 (2004). ArticleCAS Google Scholar
Bedford, M. T. & Richard, S. Arginine methylation an emerging regulator of protein function. Mol. Cell18, 263–272 (2005). ArticleCAS Google Scholar
Branscombe, T. L., Frankel, A., Lee, J. H., Cook, J. R., Yang, Z., Pestka, S. & Clarke, S. PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J. Biol. Chem.276, 32971–32976 (2001). ArticleCAS Google Scholar
Chene, P. (2001). The role of tetramerization in p53 function. Oncogene20, 2611–7. ArticleCAS Google Scholar
Stommel, J. M. et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J.18, 1660–1672 (1999). ArticleCAS Google Scholar
Meister, G. et al. Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr. Biol.11, 1990–1994 (2001). ArticleCAS Google Scholar
Pal, S., Vishwanath, S. N., Erdjument-Bromage, H., Tempst, P. & Sif, S. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol. Cell Biol.24, 9630–9645 (2004). ArticleCAS Google Scholar
Rho, J. et al. PRMT5, which forms distinct homo-oligomers, is a member of the protein-arginine methyltransferase family. J. Biol. Chem.276, 11393–401 (2001). ArticleCAS Google Scholar
Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science282, 1497–1501 (1998). ArticleCAS Google Scholar
Meek, D. W. The p53 response to DNA damage. DNA Repair3, 1049–1056 (2004). ArticleCAS Google Scholar
Oda, E. et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science288, 1053–1058 (2000). ArticleCAS Google Scholar
Vousden, K. H. Apoptosis. p53 and PUMA: a deadly duo. Science309, 1685–1686 (2005). ArticleCAS Google Scholar
Fortin, A. et al. APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. J. Cell Biol.155, 207–216 (2001). ArticleCAS Google Scholar
Kastan, M. B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell71, 587–597 (1992). ArticleCAS Google Scholar
Oda, K. et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell102, 849–862 (2000). ArticleCAS Google Scholar
Nishi, K. et al. Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J. Biol. Chem.269, 6320–6324 (1994). CASPubMed Google Scholar
Qian, H., Wang, T., Naumovski, L., Lopez, C. D. & Brachmann, R. K. Groups of p53 target genes involved in specific p53 downstream effects cluster into different classes of DNA binding sites. Oncogene21, 7901–7911 (2002). ArticleCAS Google Scholar
Zhao, R. et al. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev.14, 981–993 (2000). ArticleCAS Google Scholar
Hollstein, M. et al. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res.22, 3551–3555 (1994). CASPubMedPubMed Central Google Scholar
Davison, T. S., Yin, P., Nie, E., Kay, C. & Arrowsmith, C. H. Characterization of the oligomerization defects of two p53 mutants found in families with Li-Fraumeni and Li-Fraumeni-like syndrome. Oncogene17, 651–656 (1998). ArticleCAS Google Scholar
Lomax, M. E., Barnes, D. M., Hupp, T. R., Picksley, S. M. & Camplejohn, R. S. Characterization of p53 oligomerization domain mutations isolated from Li-Fraumeni and Li-Fraumeni like family members. Oncogene17, 643–649 (1998). ArticleCAS Google Scholar
Kawaguchi, T. et al. The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library. Oncogene24, 6976–6981 (2005). ArticleCAS Google Scholar
Stevens, C., Smith, L. & La Thangue, N. B. Chk2 activates E2F-1 in response to DNA damage. Nature Cell Biol.5, 401–409 (2003). ArticleCAS Google Scholar