X-linked and cellular IAPs modulate the stability of C-RAF kinase and cell motility (original) (raw)
References
Eckelman, B. P., Salvesen, G. S., & Scott, F. L. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep.7, 988–994 (2006). ArticleCAS Google Scholar
Salvesen, G. S. & Duckett, C. S. IAP proteins: blocking the road to death's door. Nature Rev. Mol. Cell Biol.3, 401–410 (2002). ArticleCAS Google Scholar
Rajalingam, K., Schreck, R., Rapp, U. R., & Albert, S. Ras oncogenes and their downstream targets. Biochim. Biophys. Acta1773, 1177–1195 (2007). ArticleCAS Google Scholar
Wellbrock, C., Karasarides, M., & Marais, R. The RAF proteins take centre stage. Nature Rev. Mol. Cell Biol.5, 875–885 (2004). ArticleCAS Google Scholar
Srinivasula, S. M. & Ashwell, J. D. IAPs: What's in a name? Mol. Cell30, 123–135 (2008). ArticleCAS Google Scholar
Wright, C. W. & Duckett, C. S. Reawakening the cellular death program in neoplasia through the therapeutic blockade of IAP function. J. Clin. Invest.115, 2673–2678 (2005). ArticleCAS Google Scholar
Vaux, D. L. & Silke, J. IAPs, RINGs and ubiquitylation. Nature Rev. Mol. Cell Biol.6, 287–297 (2005). ArticleCAS Google Scholar
Burstein, E. et al. A novel role for XIAP in copper homeostasis through regulation of MURR1. EMBO J.23, 244–254 (2004). ArticleCAS Google Scholar
Olayioye, M. A. et al. XIAP-deficiency leads to delayed lobuloalveolar development in the mammary gland. Cell Death Differ.12, 87–90 (2004). Article Google Scholar
Alavi, A., Hood, J. D., Frausto, R., Stupack, D. G., & Cheresh, D. A. Role of Raf in vascular protection from distinct apoptotic stimuli. Science301, 94–96 (2003). ArticleCAS Google Scholar
Dhillon, A. S., Hagan, S., Rath, O., & Kolch, W. MAP kinase signalling pathways in cancer. Oncogene26, 3279–3290 (2007). ArticleCAS Google Scholar
Rapp, U. R., Rennefahrt, U., & Troppmair, J. Bcl-2 proteins: master switches at the intersection of death signaling and the survival control by Raf kinases. Biochim. Biophys. Acta1644, 149–158 (2004). ArticleCAS Google Scholar
Tian, S. et al. Interaction and stabilization of X-linked inhibitor of apoptosis by Raf-1 protein kinase. Int. J. Oncol.29, 861–867 (2006). CASPubMed Google Scholar
Klemke, R. L. et al. Regulation of cell motility by mitogen-activated protein kinase. J. Cell Biol.137, 481–492 (1997). ArticleCAS Google Scholar
Rajalingam, K. et al. Prohibitin is required for Ras-induced Raf–MEK–ERK activation and epithelial cell migration. Nature Cell Biol.7, 837–843 (2005). ArticleCAS Google Scholar
Srinivasula, S. M. et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature410, 112–116 (2001). ArticleCAS Google Scholar
Vucic, D. Targeting IAP (inhibitor of apoptosis) proteins for therapeutic intervention in tumors. Curr. Cancer Drug Targets8, 110–117 (2008). ArticleCAS Google Scholar
da Rocha, D. S. et al. Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res.65, 10686–10691 (2005). Article Google Scholar
Grbovic, O. M. et al. V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc. Natl Acad. Sci. USA103, 57–62 (2006). ArticleCAS Google Scholar
McDonough, H. & Patterson, C. CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones8, 303–308 (2003). ArticleCAS Google Scholar
Arndt, V., Rogon, C., & Hohfeld, J. To be, or not to be — molecular chaperones in protein degradation. Cell Mol. Life Sci.64, 2525–2541 (2007). ArticleCAS Google Scholar
Isaacs, J. S., Xu, W., & Neckers, L. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell3, 213–217 (2003). ArticleCAS Google Scholar
Schulte, T. W. et al. Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf–1–MEK-mitogen-activated protein kinase signalling pathway. Mol. Cell Biol.16, 5839–5845 (1996). ArticleCAS Google Scholar
Schulte, T. W., An, W. G., & Neckers, L. M. Geldanamycin-induced destabilization of Raf-1 involves the proteasome. Biochem. Biophys. Res. Commun.239, 655–659 (1997). ArticleCAS Google Scholar
Schneider, C. et al. Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc. Natl Acad. Sci. USA93, 14536–14541 (1996). ArticleCAS Google Scholar
Young, J. C., Agashe, V. R., Siegers, K., & Hartl, F. U. Pathways of chaperone-mediated protein folding in the cytosol. Nature Rev. Mol. Cell Biol.5, 781–791 (2004). ArticleCAS Google Scholar
Demand, J., Alberti, S., Patterson, C., & Hohfeld, J. Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr. Biol.11, 1569–1577 (2001). ArticleCAS Google Scholar
Noble, C. et al. CRAF autophosphorylation of serine 621 is required to prevent its proteasome-mediated degradation. Mol. Cell31, 862–872 (2008). ArticleCAS Google Scholar
Harlin, H., Reffey, S. B., Duckett, C. S., Lindsten, T., & Thompson, C. B. Characterization of XIAP-deficient mice. Mol. Cell Biol.21, 3604–3608 (2001). ArticleCAS Google Scholar
Rajalingam, K. et al. IAP–IAP complexes required for apoptosis resistance of C. trachomatis-infected cells. PLoS Pathog.2, e114 (2006). Article Google Scholar
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer3, 11–22 (2003). ArticleCAS Google Scholar