X-linked and cellular IAPs modulate the stability of C-RAF kinase and cell motility (original) (raw)

References

  1. Eckelman, B. P., Salvesen, G. S., & Scott, F. L. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep. 7, 988–994 (2006).
    Article CAS Google Scholar
  2. Salvesen, G. S. & Duckett, C. S. IAP proteins: blocking the road to death's door. Nature Rev. Mol. Cell Biol. 3, 401–410 (2002).
    Article CAS Google Scholar
  3. Rajalingam, K., Schreck, R., Rapp, U. R., & Albert, S. Ras oncogenes and their downstream targets. Biochim. Biophys. Acta 1773, 1177–1195 (2007).
    Article CAS Google Scholar
  4. Wellbrock, C., Karasarides, M., & Marais, R. The RAF proteins take centre stage. Nature Rev. Mol. Cell Biol. 5, 875–885 (2004).
    Article CAS Google Scholar
  5. Srinivasula, S. M. & Ashwell, J. D. IAPs: What's in a name? Mol. Cell 30, 123–135 (2008).
    Article CAS Google Scholar
  6. Wright, C. W. & Duckett, C. S. Reawakening the cellular death program in neoplasia through the therapeutic blockade of IAP function. J. Clin. Invest. 115, 2673–2678 (2005).
    Article CAS Google Scholar
  7. Vaux, D. L. & Silke, J. IAPs, RINGs and ubiquitylation. Nature Rev. Mol. Cell Biol. 6, 287–297 (2005).
    Article CAS Google Scholar
  8. Burstein, E. et al. A novel role for XIAP in copper homeostasis through regulation of MURR1. EMBO J. 23, 244–254 (2004).
    Article CAS Google Scholar
  9. Olayioye, M. A. et al. XIAP-deficiency leads to delayed lobuloalveolar development in the mammary gland. Cell Death Differ. 12, 87–90 (2004).
    Article Google Scholar
  10. Alavi, A., Hood, J. D., Frausto, R., Stupack, D. G., & Cheresh, D. A. Role of Raf in vascular protection from distinct apoptotic stimuli. Science 301, 94–96 (2003).
    Article CAS Google Scholar
  11. Dhillon, A. S., Hagan, S., Rath, O., & Kolch, W. MAP kinase signalling pathways in cancer. Oncogene 26, 3279–3290 (2007).
    Article CAS Google Scholar
  12. Rapp, U. R., Rennefahrt, U., & Troppmair, J. Bcl-2 proteins: master switches at the intersection of death signaling and the survival control by Raf kinases. Biochim. Biophys. Acta 1644, 149–158 (2004).
    Article CAS Google Scholar
  13. Tian, S. et al. Interaction and stabilization of X-linked inhibitor of apoptosis by Raf-1 protein kinase. Int. J. Oncol. 29, 861–867 (2006).
    CAS PubMed Google Scholar
  14. Klemke, R. L. et al. Regulation of cell motility by mitogen-activated protein kinase. J. Cell Biol. 137, 481–492 (1997).
    Article CAS Google Scholar
  15. Rajalingam, K. et al. Prohibitin is required for Ras-induced Raf–MEK–ERK activation and epithelial cell migration. Nature Cell Biol. 7, 837–843 (2005).
    Article CAS Google Scholar
  16. Srinivasula, S. M. et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410, 112–116 (2001).
    Article CAS Google Scholar
  17. Vucic, D. Targeting IAP (inhibitor of apoptosis) proteins for therapeutic intervention in tumors. Curr. Cancer Drug Targets 8, 110–117 (2008).
    Article CAS Google Scholar
  18. da Rocha, D. S. et al. Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 65, 10686–10691 (2005).
    Article Google Scholar
  19. Grbovic, O. M. et al. V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc. Natl Acad. Sci. USA 103, 57–62 (2006).
    Article CAS Google Scholar
  20. McDonough, H. & Patterson, C. CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8, 303–308 (2003).
    Article CAS Google Scholar
  21. Arndt, V., Rogon, C., & Hohfeld, J. To be, or not to be — molecular chaperones in protein degradation. Cell Mol. Life Sci. 64, 2525–2541 (2007).
    Article CAS Google Scholar
  22. Isaacs, J. S., Xu, W., & Neckers, L. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 3, 213–217 (2003).
    Article CAS Google Scholar
  23. Schulte, T. W. et al. Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf–1–MEK-mitogen-activated protein kinase signalling pathway. Mol. Cell Biol. 16, 5839–5845 (1996).
    Article CAS Google Scholar
  24. Schulte, T. W., An, W. G., & Neckers, L. M. Geldanamycin-induced destabilization of Raf-1 involves the proteasome. Biochem. Biophys. Res. Commun. 239, 655–659 (1997).
    Article CAS Google Scholar
  25. Schneider, C. et al. Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc. Natl Acad. Sci. USA 93, 14536–14541 (1996).
    Article CAS Google Scholar
  26. Young, J. C., Agashe, V. R., Siegers, K., & Hartl, F. U. Pathways of chaperone-mediated protein folding in the cytosol. Nature Rev. Mol. Cell Biol. 5, 781–791 (2004).
    Article CAS Google Scholar
  27. Demand, J., Alberti, S., Patterson, C., & Hohfeld, J. Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr. Biol. 11, 1569–1577 (2001).
    Article CAS Google Scholar
  28. Noble, C. et al. CRAF autophosphorylation of serine 621 is required to prevent its proteasome-mediated degradation. Mol. Cell 31, 862–872 (2008).
    Article CAS Google Scholar
  29. Harlin, H., Reffey, S. B., Duckett, C. S., Lindsten, T., & Thompson, C. B. Characterization of XIAP-deficient mice. Mol. Cell Biol. 21, 3604–3608 (2001).
    Article CAS Google Scholar
  30. Rajalingam, K. et al. IAP–IAP complexes required for apoptosis resistance of C. trachomatis-infected cells. PLoS Pathog. 2, e114 (2006).
    Article Google Scholar
  31. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).
    Article CAS Google Scholar

Download references