Interaction between TAK1–TAB1–TAB2 and RCAN1–calcineurin defines a signalling nodal control point (original) (raw)
Wu, H., Peisley, A., Graef, I. A. & Crabtree G. R. NFAT signalling and the invention of vertebrates. Trends Cell Biol.17, 251–260 (2007). ArticleCAS Google Scholar
Hogan, P. G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev.17, 2205–2232 (2003). ArticleCAS Google Scholar
Molkentin, J. D. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell93, 215–228 (1998). ArticleCAS Google Scholar
Hilioti, Z. & Cunningham, K. W. The RCN family of calcineurin regulators. Biochem. Biophys. Res. Commun.311, 1089–1093 (2003). ArticleCAS Google Scholar
Davies, K. J. et al. Renaming the DSCR1/Adapt78 gene family as RCAN: regulators of calcineurin. FASEB J.21, 3023–3028 (2007). ArticleCAS Google Scholar
Chan, B., Greenan, G., McKeon, F. & Ellenberger, T. Identification of a peptide fragment of DSCR1 that competitively inhibits calcineurin activity in vitro and in vivo. Proc. Natl Acad. Sci. USA102, 13075–13080 (2005). ArticleCAS Google Scholar
Hilioti, Z. et al. GSK-3 kinases enhance calcineurin signalling by phosphorylation of RCNs. Genes Dev.18, 35–47 (2004). ArticleCAS Google Scholar
Kingsbury, T. J. & Cunningham, K. W. A conserved family of calcineurin regulators. Genes Dev.14, 1595–1604 (2000). CASPubMedPubMed Central Google Scholar
Gorlach, J. et al. Identification and characterization of a highly conserved calcineurin binding protein, CBP1/calcipressin, in Cryptococcus neoformans. EMBO J.19, 3618–3629 (2000). ArticleCAS Google Scholar
Sanna, B. et al. Modulatory calcineurin-interacting proteins 1 and 2 function as calcineurin facilitators in vivo. Proc. Natl Acad. Sci. USA103, 7327–7332 (2006). ArticleCAS Google Scholar
Vega, R. B. et al. Dual roles of modulatory calcineurin-interacting protein 1 in cardiac hypertrophy. Proc. Natl. Acad. Sci. USA100, 669–674 (2003). ArticleCAS Google Scholar
Genesca, L. et al. Phosphorylation of calcipressin 1 increases its ability to inhibit calcineurin and decreases calcipressin half-life. Biochem. J.374, 567–575 (2003). ArticleCAS Google Scholar
Takaesu, G. et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol. Cell5, 649–658 (2000). ArticleCAS Google Scholar
Yamaguchi, K. et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science270, 2008–2011 (1995). ArticleCAS Google Scholar
Besse, A. et al. TAK1-dependent signalling requires functional interaction with TAB2/TAB3. J. Biol. Chem.282, 3918–3928 (2007). ArticleCAS Google Scholar
Shibuya, H. et al. TAB1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science272, 1179–1182 (1996). ArticleCAS Google Scholar
Ninomiya-Tsuji J. et al. The kinase TAK1 can activate the NIK-I κB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature398, 252–256 (1999). ArticleCAS Google Scholar
Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature412, 346–351 (2001). ArticleCAS Google Scholar
Zhang, D. et al. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nature Med.6, 556–563 (2000). ArticleCAS Google Scholar
Vega, R. B., Yang, J., Rothermel, B. A., Bassel-Duby, R. & Williams R. S. Multiple domains of MCIP1 contribute to inhibition of calcineurin activity. J. Biol. Chem.277, 30401–30407 (2002). ArticleCAS Google Scholar
Rothermel, B. et al. A protein encoded within the Down syndrome critical region is enriched in striated muscles and inhibits calcineurin signalling. J. Biol. Chem.275, 8719–8725 (2000). ArticleCAS Google Scholar
Rothermel, B. A. et al. Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc. Natl Acad. Sci. USA98, 3328–3333 (2001). ArticleCAS Google Scholar
Watkins, S. J., Jonker, L. & Arthur, H. M. A direct interaction between TGFβ activated kinase 1 and the TGFβ type II receptor: implications for TGFβ signalling and cardiac hypertrophy. Cardiovasc. Res.69, 432–439 (2006). ArticleCAS Google Scholar
Tung, H. Y., Wangm W. & Chan, C. S. Regulation of chromosome segregation by Glc8p, a structural homologue of mammalian inhibitor 2 that functions as both an activator and an inhibitor of yeast protein phosphatase 1. Mol Cell Biol.15, 6064–6074 (1995). ArticleCAS Google Scholar
Greengard, P., Allen. P. B. & Nairn, A. C. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron23, 435–447 (1999). ArticleCAS Google Scholar
Cohen, P. T. Protein phosphatase 1 — targeted in many directions. J. Cell. Sci.115, 241–256 (2002). CASPubMed Google Scholar
Abbasi, S. et al. Protein kinase-mediated regulation of calcineurin through the phosphorylation of modulatory calcineurin-interacting protein 1. J. Biol. Chem.281, 7717–7726 (2006). ArticleCAS Google Scholar
Liu, Q., Wilkins, B. J., Lee, Y. J., Ichijo, H. & Molkentin, J. D. Direct interaction and reciprocal regulation between ASK1 and calcineurin-NFAT control cardiomyocyte death and growth. Mol. Cell. Biol.26, 3785–3797 (2006). ArticleCAS Google Scholar
Liang, Q. et al. The transcription factor GATA4 is activated by extracellular signal-regulated kinase 1- and 2-mediated phosphorylation of serine 105 in cardiomyocytes. Mol. Cell. Biol.21, 7460–7469 (2001). ArticleCAS Google Scholar
Godeny, M. D. et al. The N-terminal SH2 domain of the tyrosine phosphatase, SHP-2, is essential for Jak2-dependent signalling via the angiotensin II type AT1 receptor. Cell. Signal.19, 600–609 (2007). ArticleCAS Google Scholar