Mouse differentiating spermatogonia can generate germinal stem cells in vivo (original) (raw)
References
Kai, T. & Spradling, A. Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature428, 564–569 (2004). ArticleCAS Google Scholar
Brawley, C. & Matunis, E. Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science304, 1331–1334 (2004). ArticleCAS Google Scholar
de Rooij, D. G. Proliferation and differentiation of spermatogonial stem cells. Reproduction121, 347–354 (2001). ArticleCAS Google Scholar
Schrans-Stassen, B. H., van de Kant, H. J., de Rooij, D. G. & van Pelt, A. M. Differential expression of c-kit in mouse undifferentiated and differentiating type A spermatogonia. Endocrinology140, 5894–5900 (1999). ArticleCAS Google Scholar
Ohta, H., Yomogida, K., Dohmae, K. & Nishimune, Y. Regulation of proliferation and differentiation in spermatogonial stem cells: the role of c-kit and its ligand SCF. Development127, 2125–2131 (2000). CASPubMed Google Scholar
Yoshida, S. et al. Neurogenin3 delineates the earliest stages of spermatogenesis in the mouse testis. Dev. Biol.269, 447–458 (2004). ArticleCAS Google Scholar
Raverot, G., Weiss, J., Park, S. Y., Hurley, L. & Jameson, J. L. Sox3 expression in undifferentiated spermatogonia is required for the progression of spermatogenesis. Dev. Biol.283, 215–225 (2005). ArticleCAS Google Scholar
Tokuda, M., Kadokawa, Y., Kurahashi, H. & Marunouchi, T. CDH1 is a specific marker for undifferentiated spermatogonia in mouse testes. Biol. Reprod.76, 130–141 (2007). ArticleCAS Google Scholar
Shinohara, T., Orwig, K. E., Avarbock, M. R. & Brinster, R. L. Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc. Natl Acad. Sci. USA97, 8346–8351 (2000). ArticleCAS Google Scholar
Bastos, H. et al. Flow cytometric characterization of viable meiotic and post-meiotic cells by Hoechst 33342 in mouse spermatogenesis. Cytometry A65, 40–49 (2005). Article Google Scholar
Lassalle, B. et al. 'Side population' cells in adult mouse testis express Bcrp1 gene and are enriched in spermatogonia and germinal stem cells. Development131, 479–487 (2004). ArticleCAS Google Scholar
Zhang, X., Ebata, K. T. & Nagano, M. C. Genetic analysis of the clonal origin of regenerating mouse spermatogenesis following transplantation. Biol. Reprod.69, 1872–1878 (2003). ArticleCAS Google Scholar
Shinohara, T., Avarbock, M. R. & Brinster, R. L. beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc. Natl Acad. Sci. USA96, 5504–5509 (1999). ArticleCAS Google Scholar
Kubota, H., Avarbock, M. R. & Brinster, R. L. Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol. Reprod.71, 722–731 (2004). ArticleCAS Google Scholar
Shinohara, T., Orwig, K. E., Avarbock, M. R. & Brinster, R. L. Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility. Proc. Natl Acad. Sci. USA98, 6186–6191 (2001). ArticleCAS Google Scholar
Falciatori, I. et al. Identification and enrichment of spermatogonial stem cells displaying side-population phenotype in immature mouse testis. FASEB J.18, 376–378 (2004). ArticleCAS Google Scholar
Kubota, H., Avarbock, M. R. & Brinster, R. L. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc. Natl Acad. Sci. USA100, 6487–6492 (2003). ArticleCAS Google Scholar
Chen, C. et al. ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature436, 1030–1034 (2005). ArticleCAS Google Scholar
Meng, X. et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science287, 1489–1493 (2000). ArticleCAS Google Scholar
Bedell, M. A. & Mahakali Zama, A. Genetic analysis of Kit ligand functions during mouse spermatogenesis. J. Androl.25, 188–199 (2004). ArticleCAS Google Scholar
Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell109, 625–637 (2002). ArticleCAS Google Scholar
Kubota, H., Avarbock, M. R. & Brinster, R. L. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl Acad. Sci. USA101, 16489–16494 (2004). ArticleCAS Google Scholar
Yeh, J. R., Zhang, X. & Nagano, M. C. Establishment of a short-term in vitro assay for mouse spermatogonial stem cells. Biol. Reprod.77, 897–904 (2007). ArticleCAS Google Scholar
de Rooij, D. G. & Grootegoed, J. A. Spermatogonial stem cells. Curr. Opin. Cell Biol.10, 694–701 (1998). ArticleCAS Google Scholar
Nakagawa, T., Nabeshima, Y. & Yoshida, S. Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev. Cell12, 195–206 (2007). ArticleCAS Google Scholar
Hanna, J. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell133, 250–264 (2008). ArticleCAS Google Scholar
Aoi, T. et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science26, 101–106 (2008). Google Scholar
Ryu, B. Y., Orwig, K. E., Oatley, J. M., Avarbock, M. R. & Brinster, R. L. Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells24, 1505–1511 (2006). ArticleCAS Google Scholar
Akala, O. O. et al. Long-term haematopoietic reconstitution by Trp53−/−p16Ink4a−/−p19Arf−/− multipotent progenitors. Nature453, 228–232 (2008). ArticleCAS Google Scholar
Guan, K. et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature440, 1199–1203 (2006). ArticleCAS Google Scholar
Seandel, M. et al. Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature449, 346–350 (2007). ArticleCAS Google Scholar
Boulanger, C. A., Mack, D. L., Booth, B. W. & Smith, G. H. Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo. Proc. Natl Acad. Sci. USA104, 3781–3786 (2007). Article Google Scholar
Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett.407, 313–319 (1997). ArticleCAS Google Scholar