A two-step model for senescence triggered by a single critically short telomere (original) (raw)
References
Palm, W. & de Lange, T. How shelterin protects mammalian telomeres. Ann. Rev. Gen.42, 301–334 (2008). ArticleCAS Google Scholar
Gilson, E. & Geli, V. How telomeres are replicated. Nature Rev. Mol. Cell Biol.8, 825–838 (2007). ArticleCAS Google Scholar
Hemann, M. T., Strong, M. A., Hao, L. Y. & Greider, C. W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell107, 67–77 (2001). ArticleCAS Google Scholar
Marcand, S., Brevet, V. & Gilson, E. Progressive cis-inhibition of telomerase upon telomere elongation. Embo J.18, 3509–3519 (1999). ArticleCAS Google Scholar
Sabourin, M., Tuzon, C. T. & Zakian, V. A. Telomerase and Tel1p preferentially associate with short telomeres in S. cerevisiae. Mol. Cell27, 550–561 (2007). ArticleCAS Google Scholar
Decourty, L. et al. Linking functionally related genes by sensitive and quantitative characterization of genetic interaction profiles. Proc. Natl Acad. Sci. USA105, 5821–5826 (2008). ArticleCAS Google Scholar
Lundblad, V. & Blackburn, E. H. An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell73, 347–360 (1993). ArticleCAS Google Scholar
Enomoto, S., Glowczewski, L. & Berman, J. MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae. Mol. Biol. Cell.13, 2626–2638 (2002). ArticleCAS Google Scholar
Forstemann, K., Hoss, M. & Lingner, J. Telomerase-dependent repeat divergence at the 3′ ends of yeast telomeres. Nucleic Acids Res.28, 2690–2694 (2000). ArticleCAS Google Scholar
Louis, E. J. The chromosome ends of Saccharomyces cerevisiae.Yeast11, 1553–1573 (1995). ArticleCAS Google Scholar
Sandell, L. L. & Zakian, V. A. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell75, 729–739 (1993). ArticleCAS Google Scholar
Leroy, C. et al. PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break. Mol. Cell11, 827–835 (2003). ArticleCAS Google Scholar
Teixeira, M. T., Arneric, M., Sperisen, P. & Lingner, J. Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell117, 323–335 (2004). ArticleCAS Google Scholar
Teng, S. C. & Zakian, V. A. Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol.19, 8083–8093 (1999). ArticleCAS Google Scholar
Krogh, B. O. & Symington, L. S. Recombination proteins in yeast. Ann. Rev. Gen.38, 233–271 (2004). ArticleCAS Google Scholar
Duro, E., Vaisica, J. A., Brown, G. W. & Rouse, J. Budding yeast Mms22 and Mms1 regulate homologous recombination induced by replisome blockage. DNA Repair (Amst)7, 811–818 (2008). ArticleCAS Google Scholar
Hryciw, T., Tang, M., Fontanie, T. & Xiao, W. MMS1 protects against replication-dependent DNA damage in Saccharomyces cerevisiae. Mol. Genet. Genomics266, 848–857 (2002). ArticleCAS Google Scholar
Ui, A. et al. Activation of a novel pathway involving Mms1 and Rad59 in sgs1 cells. Biochem. Biophys. Res. Commun.356, 1031–1037 (2007). ArticleCAS Google Scholar
Zaidi, I. W. et al. Rtt101 and Mms1 in budding yeast form a CUL4(DDB1)-like ubiquitin ligase that promotes replication through damaged DNA. EMBO Rep.9, 1034–1040 (2008). ArticleCAS Google Scholar
Zhao, X., Muller, E. G. & Rothstein, R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell2, 329–340 (1998). ArticleCAS Google Scholar
Ijpma, A. S. & Greider, C. W. Short Telomeres Induce a DNA Damage Response in Saccharomyces cerevisiae.Mol. Biol. Cell14, 987–1001 (2003). ArticleCAS Google Scholar
Bianchi, A. & Shore, D. Increased association of telomerase with short telomeres in yeast. Genes Dev.21, 1726–1730 (2007). ArticleCAS Google Scholar
Arneric, M. & Lingner, J. Tel1 kinase and subtelomere-bound Tbf1 mediate preferential elongation of short telomeres by telomerase in yeast. EMBO Rep.8, 1080–1085. (2007). ArticleCAS Google Scholar
Hector, R. E. et al. Tel1p preferentially associates with short telomeres to stimulate their elongation. Mol. Cell27, 851–858 (2007). ArticleCAS Google Scholar
Ritchie, K. B., Mallory, J. C. & Petes, T. D. Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae.Mol. Cell. Biol.19, 6065–6075 (1999). ArticleCAS Google Scholar
Mantiero, D., Clerici, M., Lucchini, G. & Longhese, M. P. Dual role for Saccharomyces cerevisiae Tel1 in the checkpoint response to double-strand breaks. EMBO Rep.8, 380–387 (2007). ArticleCAS Google Scholar
Sadaie, M., Naito, T. & Ishikawa, F. Stable inheritance of telomere chromatin structure and function in the absence of telomeric repeats. Genes Dev.17, 2271–2282 (2003). ArticleCAS Google Scholar
Khadaroo, B. et al. The DNA damage response at eroded telomeres and tethering to the nuclear pore complex. Nature Cell Biol., doi: 10.1038/ncb1910 (this issue).
Schaetzlein, S. et al. Exonuclease-1 deletion impairs DNA damage signaling and prolongs lifespan of telomere-dysfunctional mice. Cell130, 863–877 (2007). ArticleCAS Google Scholar
Jeyapalan, J. C., Ferreira, M., Sedivy, J. M. & Herbig, U. Accumulation of senescent cells in mitotic tissue of aging primates. Mech. Ageing Dev.128, 36–44 (2007). ArticleCAS Google Scholar
Marcand, S., Gilson, E. & Shore, D. A protein-counting mechanism for telomere length regulation in yeast. Science275, 986–990 (1997). . ArticleCAS Google Scholar
Mallory, J. C. & Petes, T. D. Protein kinase activity of Tel1p and Mec1p, two Saccharomyces cerevisiae proteins related to the human ATM protein kinase. Proc. Natl Acad. Sci. USA97, 13749–13754 (2000). ArticleCAS Google Scholar
Longhese, M. P., Paciotti, V., Neecke, H. & Lucchini, G. Checkpoint proteins influence telomeric silencing and length maintenance in budding yeast. Genetics155, 1577–1591 (2000). CASPubMedPubMed Central Google Scholar
Abramoff, M. D., Magelhaes, P. J. & Ram, S. J. Image Processing with ImageJ. Biophotonics Int.11, 36–42 (2004). Google Scholar
Ihaka, R. & Gentleman, R. R. : a language for data analysis and graphics. J. Comp. Graph. Stat.5, 299–314 (1996). Google Scholar
Tresaugues, L. et al. Structural characterization of Set1 RNA recognition motifs and their role in histone H3 lysine 4 methylation. J. Mol. Biol.359, 1170–1181 (2006). ArticleCAS Google Scholar