A two-step model for senescence triggered by a single critically short telomere (original) (raw)

References

  1. Palm, W. & de Lange, T. How shelterin protects mammalian telomeres. Ann. Rev. Gen. 42, 301–334 (2008).
    Article CAS Google Scholar
  2. Gilson, E. & Geli, V. How telomeres are replicated. Nature Rev. Mol. Cell Biol. 8, 825–838 (2007).
    Article CAS Google Scholar
  3. Hemann, M. T., Strong, M. A., Hao, L. Y. & Greider, C. W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107, 67–77 (2001).
    Article CAS Google Scholar
  4. Marcand, S., Brevet, V. & Gilson, E. Progressive cis-inhibition of telomerase upon telomere elongation. Embo J. 18, 3509–3519 (1999).
    Article CAS Google Scholar
  5. Sabourin, M., Tuzon, C. T. & Zakian, V. A. Telomerase and Tel1p preferentially associate with short telomeres in S. cerevisiae. Mol. Cell 27, 550–561 (2007).
    Article CAS Google Scholar
  6. Decourty, L. et al. Linking functionally related genes by sensitive and quantitative characterization of genetic interaction profiles. Proc. Natl Acad. Sci. USA 105, 5821–5826 (2008).
    Article CAS Google Scholar
  7. Lundblad, V. & Blackburn, E. H. An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73, 347–360 (1993).
    Article CAS Google Scholar
  8. Enomoto, S., Glowczewski, L. & Berman, J. MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae. Mol. Biol. Cell. 13, 2626–2638 (2002).
    Article CAS Google Scholar
  9. Forstemann, K., Hoss, M. & Lingner, J. Telomerase-dependent repeat divergence at the 3′ ends of yeast telomeres. Nucleic Acids Res. 28, 2690–2694 (2000).
    Article CAS Google Scholar
  10. Louis, E. J. The chromosome ends of Saccharomyces cerevisiae. Yeast 11, 1553–1573 (1995).
    Article CAS Google Scholar
  11. Sandell, L. L. & Zakian, V. A. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75, 729–739 (1993).
    Article CAS Google Scholar
  12. Leroy, C. et al. PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break. Mol. Cell 11, 827–835 (2003).
    Article CAS Google Scholar
  13. Teixeira, M. T., Arneric, M., Sperisen, P. & Lingner, J. Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell 117, 323–335 (2004).
    Article CAS Google Scholar
  14. Teng, S. C. & Zakian, V. A. Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 8083–8093 (1999).
    Article CAS Google Scholar
  15. Krogh, B. O. & Symington, L. S. Recombination proteins in yeast. Ann. Rev. Gen. 38, 233–271 (2004).
    Article CAS Google Scholar
  16. Duro, E., Vaisica, J. A., Brown, G. W. & Rouse, J. Budding yeast Mms22 and Mms1 regulate homologous recombination induced by replisome blockage. DNA Repair (Amst) 7, 811–818 (2008).
    Article CAS Google Scholar
  17. Hryciw, T., Tang, M., Fontanie, T. & Xiao, W. MMS1 protects against replication-dependent DNA damage in Saccharomyces cerevisiae. Mol. Genet. Genomics 266, 848–857 (2002).
    Article CAS Google Scholar
  18. Ui, A. et al. Activation of a novel pathway involving Mms1 and Rad59 in sgs1 cells. Biochem. Biophys. Res. Commun. 356, 1031–1037 (2007).
    Article CAS Google Scholar
  19. Zaidi, I. W. et al. Rtt101 and Mms1 in budding yeast form a CUL4(DDB1)-like ubiquitin ligase that promotes replication through damaged DNA. EMBO Rep. 9, 1034–1040 (2008).
    Article CAS Google Scholar
  20. Zhao, X., Muller, E. G. & Rothstein, R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2, 329–340 (1998).
    Article CAS Google Scholar
  21. Ijpma, A. S. & Greider, C. W. Short Telomeres Induce a DNA Damage Response in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 987–1001 (2003).
    Article CAS Google Scholar
  22. Bianchi, A. & Shore, D. Increased association of telomerase with short telomeres in yeast. Genes Dev. 21, 1726–1730 (2007).
    Article CAS Google Scholar
  23. Arneric, M. & Lingner, J. Tel1 kinase and subtelomere-bound Tbf1 mediate preferential elongation of short telomeres by telomerase in yeast. EMBO Rep. 8, 1080–1085. (2007).
    Article CAS Google Scholar
  24. Hector, R. E. et al. Tel1p preferentially associates with short telomeres to stimulate their elongation. Mol. Cell 27, 851–858 (2007).
    Article CAS Google Scholar
  25. Ritchie, K. B., Mallory, J. C. & Petes, T. D. Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 6065–6075 (1999).
    Article CAS Google Scholar
  26. Mantiero, D., Clerici, M., Lucchini, G. & Longhese, M. P. Dual role for Saccharomyces cerevisiae Tel1 in the checkpoint response to double-strand breaks. EMBO Rep. 8, 380–387 (2007).
    Article CAS Google Scholar
  27. Sadaie, M., Naito, T. & Ishikawa, F. Stable inheritance of telomere chromatin structure and function in the absence of telomeric repeats. Genes Dev. 17, 2271–2282 (2003).
    Article CAS Google Scholar
  28. Khadaroo, B. et al. The DNA damage response at eroded telomeres and tethering to the nuclear pore complex. Nature Cell Biol., doi: 10.1038/ncb1910 (this issue).
  29. Schaetzlein, S. et al. Exonuclease-1 deletion impairs DNA damage signaling and prolongs lifespan of telomere-dysfunctional mice. Cell 130, 863–877 (2007).
    Article CAS Google Scholar
  30. Jeyapalan, J. C., Ferreira, M., Sedivy, J. M. & Herbig, U. Accumulation of senescent cells in mitotic tissue of aging primates. Mech. Ageing Dev. 128, 36–44 (2007).
    Article CAS Google Scholar
  31. Marcand, S., Gilson, E. & Shore, D. A protein-counting mechanism for telomere length regulation in yeast. Science 275, 986–990 (1997). .
    Article CAS Google Scholar
  32. Mallory, J. C. & Petes, T. D. Protein kinase activity of Tel1p and Mec1p, two Saccharomyces cerevisiae proteins related to the human ATM protein kinase. Proc. Natl Acad. Sci. USA 97, 13749–13754 (2000).
    Article CAS Google Scholar
  33. Longhese, M. P., Paciotti, V., Neecke, H. & Lucchini, G. Checkpoint proteins influence telomeric silencing and length maintenance in budding yeast. Genetics 155, 1577–1591 (2000).
    CAS PubMed PubMed Central Google Scholar
  34. Abramoff, M. D., Magelhaes, P. J. & Ram, S. J. Image Processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).
    Google Scholar
  35. Ihaka, R. & Gentleman, R. R. : a language for data analysis and graphics. J. Comp. Graph. Stat. 5, 299–314 (1996).
    Google Scholar
  36. Tresaugues, L. et al. Structural characterization of Set1 RNA recognition motifs and their role in histone H3 lysine 4 methylation. J. Mol. Biol. 359, 1170–1181 (2006).
    Article CAS Google Scholar

Download references