Rab27a and Rab27b control different steps of the exosome secretion pathway (original) (raw)
Thery, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nature Rev. Immunol.2, 569–579 (2002). ArticleCAS Google Scholar
Fevrier, B. & Raposo, G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr. Opin. Cell Biol.16, 415–421 (2004). ArticleCAS Google Scholar
Johnstone, R. M. Exosomes biological significance: a concise review. Blood Cells Mol. Dis.36, 315–321 (2006). ArticleCAS Google Scholar
Lakkaraju, A. & Rodriguez-Boulan, E. Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol.18, 199–209 (2008). ArticleCAS Google Scholar
Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med.183, 1161–1172 (1996). ArticleCAS Google Scholar
Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nature Med.4, 594–600 (1998). ArticleCAS Google Scholar
Thery, C. et al. Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nature Immunol.3, 1156–1162 (2002). ArticleCAS Google Scholar
Wiley, R. D. & Gummuluru, S. Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc. Natl Acad. Sci. USA103, 738–743 (2006). ArticleCAS Google Scholar
Fevrier, B. et al. Cells release prions in association with exosomes. Proc. Natl Acad. Sci. USA101, 9683–9688 (2004). ArticleCAS Google Scholar
Rajendran, L. et al. Alzheimer's disease β-amyloid peptides are released in association with exosomes. Proc. Natl Acad. Sci. USA103, 11172–11177 (2006). ArticleCAS Google Scholar
Wolfers, J. et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nature Med.7, 297–303 (2001). ArticleCAS Google Scholar
Iero, M. et al. Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ.15, 80–88 (2008). ArticleCAS Google Scholar
Zeelenberg, I. S. et al. Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses. Cancer Res.68, 1228–1235 (2008). ArticleCAS Google Scholar
Futter, C. E., Collinson, L. M., Backer, J. M. & Hopkins, C. R. Human VPS34 is required for internal vesicle formation within multivesicular endosomes. J. Cell Biol.155, 1251–1264 (2001). ArticleCAS Google Scholar
Pan, B. T., Teng, K., Wu, C., Adam, M. & Johnstone, R. M. Electron. microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol.101, 942–948 (1985). ArticleCAS Google Scholar
Booth, A. M. et al. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J. Cell Biol.172, 923–935 (2006). ArticleCAS Google Scholar
Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol.2, 107–117 (2001). ArticleCAS Google Scholar
Seabra, M. C., Mules, E. H. & Hume, A. N. Rab GTPases, intracellular traffic and disease. Trends Mol. Med.8, 23–30 (2002). ArticleCAS Google Scholar
Ali, B. R. & Seabra, M. C. Targeting of Rab GTPases to cellular membranes. Biochem. Soc. Trans.33, 652–656 (2005). ArticleCAS Google Scholar
Escola, J. M. et al. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem.273, 20121–20127 (1998). ArticleCAS Google Scholar
Morelli, A. E. et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood104, 3257–3266 (2004). ArticleCAS Google Scholar
Thery, C. et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol.166, 7309–7318 (2001). ArticleCAS Google Scholar
Ramalho, J. S. et al. Chromosomal mapping, gene structure and characterization of the human and murine RAB27B gene. BMC Genet.2, 2 (2001). ArticleCAS Google Scholar
Thery, C., Amigorena, S., Raposo, G. & Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. Chapter 3, Unit 3 22 (2006).
Desnos, C. et al. Myosin va mediates docking of secretory granules at the plasma membrane. J. Neurosci.27, 10636–10645 (2007). ArticleCAS Google Scholar
Huet, S. et al. Analysis of transient behavior in complex trajectories: application to secretory vesicle dynamics. Biophys. J.91, 3542–3559 (2006). ArticleCAS Google Scholar
Nofal, S., Becherer, U., Hof, D., Matti, U. & Rettig, J. Primed vesicles can be distinguished from docked vesicles by analyzing their mobility. J. Neurosci.27, 1386–1395 (2007). ArticleCAS Google Scholar
Beraud-Dufour, S. & Balch, W. A journey through the exocytic pathway. J. Cell Sci.115, 1779–1780 (2002). PubMed Google Scholar
Pereira-Leal, J. B. & Seabra, M. C. Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol.313, 889–901 (2001). ArticleCAS Google Scholar
Buschow, S. I. et al. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic10, 1528–1542 (2009). ArticleCAS Google Scholar
Desnos, C. et al. Rab27A and its effector MyRIP link secretory granules to F-actin and control their motion towards release sites. J. Cell Biol.163, 559–570 (2003). ArticleCAS Google Scholar
Chen, X. et al. Rab27b localizes to zymogen granules and regulates pancreatic acinar exocytosis. Biochem. Biophys. Res. Commun.323, 1157–1162 (2004). ArticleCAS Google Scholar
Imai, A., Yoshie, S., Nashida, T., Shimomura, H. & Fukuda, M. The small GTPase Rab27B regulates amylase release from rat parotid acinar cells. J. Cell Sci.117, 1945–1953 (2004). ArticleCAS Google Scholar
Mizuno, K. et al. Rab27b regulates mast cell granule dynamics and secretion. Traffic8, 883–892 (2007). ArticleCAS Google Scholar
Tolmachova, T., Abrink, M., Futter, C. E., Authi, K. S. & Seabra, M. C. Rab27b regulates number and secretion of platelet dense granules. Proc. Natl Acad. Sci. USA104, 5872–5877 (2007). ArticleCAS Google Scholar
Stinchcombe, J. C. et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J. Cell Biol.152, 825–834 (2001). ArticleCAS Google Scholar
Barral, D. C. et al. Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome. J. Clin. Invest.110, 247–257 (2002). ArticleCAS Google Scholar
Strom, M., Hume, A. N., Tarafder, A. K., Barkagianni, E. & Seabra, M. C. A family of Rab27-binding proteins. Melanophilin links Rab27a and myosin Va function in melanosome transport. J. Biol. Chem.277, 25423–25430 (2002). ArticleCAS Google Scholar
Seabra, M. C. & Coudrier, E. Rab GTPases and myosin motors in organelle motility. Traffic5, 393–399 (2004). ArticleCAS Google Scholar
Savina, A., Vidal, M. & Colombo, M. I. The exosome pathway in K562 cells is regulated by Rab11. J. Cell Sci.115, 2505–2515 (2002). CASPubMed Google Scholar
Kondo, H. et al. Constitutive GDP/GTP exchange and secretion-dependent GTP hydrolysis activity for Rab27 in platelets. J. Biol. Chem.281, 28657–28665 (2006). ArticleCAS Google Scholar
Stumptner-Cuvelette, P. et al. HIV-1 Nef impairs MHC class II antigen presentation and surface expression. Proc. Natl Acad. Sci. USA98, 12144–12149 (2001). ArticleCAS Google Scholar
Hume, A. N. et al. Rab27a regulates the peripheral distribution of melanosomes in melanocytes. J. Cell Biol.152, 795–808 (2001). ArticleCAS Google Scholar
Blott, E. J., Bossi, G., Clark, R., Zvelebil, M. & Griffiths, G. M. Fas ligand is targeted to secretory lysosomes via a proline-rich domain in its cytoplasmic tail. J. Cell Sci.114, 2405–2416 (2001). CASPubMed Google Scholar
Fukuda, M., Kanno, E., Saegusa, C., Ogata, Y. & Kuroda, T. S. Slp4-a/granuphilin-a regulates dense-core vesicle exocytosis in PC12 cells. J. Biol. Chem.277, 39673–39678 (2002). ArticleCAS Google Scholar
Shu, X., Shaner, N. C., Yarbrough, C. A., Tsien, R. Y. & Remington, S. J. Novel chromophores and buried charges control color in mFruits. Biochemistry45, 9639–9647 (2006). ArticleCAS Google Scholar
Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell124, 1283–1298 (2006). ArticleCAS Google Scholar
Racine, V. et al. Visualization and quantification of vesicle trafficking on a three-dimensional cytoskeleton network in living cells. J. Microsc.225, 214–228 (2007). Article Google Scholar
Steyer, J. A. & Almers, W. Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy. Biophys. J.76, 2262–2271 (1999). ArticleCAS Google Scholar