Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system (original) (raw)
Moore, M., Mahaffey, D., Brodsky, F. & Anderson, R. Assembly of clathrin-coated pits onto purified plasma membranes. Science236, 558–563 (1987). ArticleCAS Google Scholar
Smythe, E., Pypaert, M., Lucocq, J. & Warren, G. Formation of coated vesicles from coated pits in broken A431 cells. J. Cell Biol.108, 843–853 (1989). ArticleCAS Google Scholar
Schmid, S. L. & Smythe, E. Stage-specific assays for coated pit formation and coated vesicle budding in vitro. J. Cell Biol.114, 869–880 (1991). ArticleCAS Google Scholar
Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods3, 793–796 (2006). ArticleCAS Google Scholar
Bates, M., Huang, B., Dempsey, G. T. & Zhuang, X. Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes. Science317, 1749–1753 (2007). ArticleCAS Google Scholar
Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science319, 810–813 (2008). ArticleCAS Google Scholar
Hinshaw, J. E. Dynamin and its role in membrane fission. Annu. Rev. Cell Dev. Biol.16, 483–519 (2000). ArticleCAS Google Scholar
Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol.155, 193–200 (2001). ArticleCAS Google Scholar
Kamioka, Y. et al. A novel dynamin-associating molecule, formin-binding protein 17, induces tubular membrane invaginations and participates in endocytosis. J. Biol. Chem.279, 40091–40099 (2004). ArticleCAS Google Scholar
Itoh, T. et al. Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev. Cell9, 791–804 (2005). ArticleCAS Google Scholar
Tsujita, K. et al. Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J. Cell Biol.172, 269–279 (2006). ArticleCAS Google Scholar
Frost, A. et al. Structural basis of membrane invagination by F-BAR domains. Cell132, 807–817 (2008). ArticleCAS Google Scholar
Takei, K., McPherson, P. S., Schmid, S. L. & Camilli, P. D. Tubular membrane invaginations coated by dynamin rings are induced by GTP-γS in nerve terminals. Nature374, 186–190 (1995). ArticleCAS Google Scholar
Ringstad, N. et al. Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron24, 143–154 (1999). ArticleCAS Google Scholar
Ho, H.-Y. H. et al. Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell118, 203–216 (2004). ArticleCAS Google Scholar
Takano, K., Toyooka, K. & Suetsugu, S. EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization. EMBO J.27, 2817–2828 (2008). ArticleCAS Google Scholar
Anitei, M. et al. Protein complexes containing CYFIP/Sra/PIR121 coordinate Arf1 and Rac1 signalling during clathrin-AP-1-coated carrier biogenesis at the TGN. Nat. Cell Biol.12, 330–340 (2010). ArticleCAS Google Scholar
Shimada, A. et al. Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell129, 761–772 (2007). ArticleCAS Google Scholar
Giuliani, C. et al. Requirements for F-BAR proteins TOCA-1 and TOCA-2 in actin dynamics and membrane trafficking during Caenorhabditis elegans oocyte growth and embryonic epidermal morphogenesis. PLoS Genet.5, e1000675 (2009). Article Google Scholar
Takei, K., Slepnev, V. I., Haucke, V. & De Camilli, P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat. Cell Biol.1, 33–39 (1999). ArticleCAS Google Scholar
Ferguson, S. et al. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev. Cell17, 811–822 (2009). ArticleCAS Google Scholar
Soulet, F., Yarar, D., Leonard, M. & Schmid, S. L. SNX9 regulates dynamin assembly and is required for efficient clathrin-mediated endocytosis. Mol. Biol. Cell16, 2058–2067 (2005). ArticleCAS Google Scholar
Henne, W. M. et al. FCHo proteins are nucleators of clathrin-mediated endocytosis. Science328, 1281–1284 (2010). ArticleCAS Google Scholar
Sheetz, M. P. & Dai, J. Modulation of membrane dynamics and cell motility by membrane tension. Trends Cell Biol.6, 85–89 (1996). ArticleCAS Google Scholar
Zimmerberg, J. & Kozlov, M. M. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol.7, 9–19 (2006). ArticleCAS Google Scholar
Kosaka, T. & Ikeda, K. Reversible blockage of membrane retrieval and endocytosis in the garland cell of the temperature-sensitive mutant of Drosophila melanogaster, shibirets. J. Cell Biol.97, 499–507 (1983). ArticleCAS Google Scholar
Willingham, M. et al. Receptor-mediated endocytosis in cultured fibroblasts: cryptic coated pits and the formation of receptosomes. J. Histochem. Cytochem.29, 1003–1013 (1981). ArticleCAS Google Scholar
He, W. et al. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography. Nature455, 542–546 (2008). ArticleCAS Google Scholar
Veiga, E. et al. Invasive and adherent bacterial pathogens co-opt host clathrin for infection. Cell Host Microbe2, 340–351 (2007). ArticleCAS Google Scholar
Cureton, D. K., Massol, R. H., Saffarian, S., Kirchhausen, T. L. & Whelan, S. P. J. Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog.5, e1000394 (2009). Article Google Scholar
Butler, M. H. et al. Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial sSegments and nodes of Ranvier in brain and around T tubules in skeletal muscle. J. Cell Biol.137, 1355–1367 (1997). ArticleCAS Google Scholar
Huang, B., Jones, S. A., Brandenburg, B. & Zhuang, X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nature Methods5, 1047–1052 (2008). ArticleCAS Google Scholar
Campbell, C., Squicciarini, J., Shia, M., Pilch, P. F. & Fine, R. E. Identification of a protein kinase as an intrinsic component of rat liver coated vesicles. Biochemistry23, 4420–4426 (1984). ArticleCAS Google Scholar
Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature441, 528–531 (2006). ArticleCAS Google Scholar
Chen, H. & De Camilli, P. The association of epsin with ubiquitinated cargo along the endocytic pathway is negatively regulated by its interaction with clathrin. Proc. Natl Acad. Sci. USA102, 2766–2771 (2005). ArticleCAS Google Scholar
Merrifield, C. J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell121, 593–606 (2005). ArticleCAS Google Scholar
Heuser, J. The production of 'cell cortices' for light and electron microscopy. Traffic1, 545–552 (2000). ArticleCAS Google Scholar
Lin, H., Moore, M., Sanan, D. & Anderson, R. Reconstitution of clathrin-coated pit budding from plasma membranes. J. Cell Biol.114, 881–891 (1991). ArticleCAS Google Scholar
Holroyd, P., Lang, T., Wenzel, D., De Camilli, P. & Jahn, R. Imaging direct, dynamin-dependent recapture of fusing secretory granules on plasma membrane lawns from PC12 cells. Proc. Natl Acad. Sci. USA99, 16806–16811 (2002). ArticleCAS Google Scholar
Heuser, J. Effects of cytoplasmic acidification on clathrin lattice morphology. J. Cell Biol.108, 401–411 (1989). ArticleCAS Google Scholar