Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress (original) (raw)

References

  1. Morishita, K. Leukemogenesis of the EVI1/MEL1 gene family. Int. J. Hematol. 85, 279–286 (2007).
    Article CAS Google Scholar
  2. Bjork, B. C., Turbe-Doan, A., Prysak, M., Herron, B. J. & Beier, D. R. Prdm16 is required for normal palatogenesis in mice. Hum. Mol. Genet. 19, 774–789 (2010).
    Article CAS Google Scholar
  3. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008).
    Article CAS Google Scholar
  4. Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6, 38–54 (2007).
    Article CAS Google Scholar
  5. Murholm, M. et al. Dynamic regulation of genes involved in mitochondrial DNA replication and transcription during mouse brown fat cell differentiation and recruitment. PloS one 4, e8458 (2009).
    Article Google Scholar
  6. He, S., Nakada, D. & Morrison, S. J. Mechanisms of stem cell self-renewal. Annu. Rev. Cell Dev. Biol. 25, 377–406 (2009).
    Article CAS Google Scholar
  7. Miyamoto, K. et al. FoxO3a is essential for maintenance of the hematopoietic stem cell pool. Cell stem cell 1, 101–112 (2007).
    Article CAS Google Scholar
  8. Paik, J. H. et al. FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell stem cell 5, 540–553 (2009).
    Article CAS Google Scholar
  9. Renault, V. M. et al. FoxO3 regulates neural stem cell homeostasis. Cell stem cell 5, 527–539 (2009).
    Article CAS Google Scholar
  10. Tothova, Z. et al. FoxOs are critical mediators of haematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).
    Article CAS Google Scholar
  11. Valk-Lingbeek, M. E., Bruggeman, S. W. & van Lohuizen, M. Stem cells and cancer; the polycomb connection. Cell 118, 409–418 (2004).
    Article CAS Google Scholar
  12. Rossi, D. J., Jamieson, C. H. & Weissman, I. L. Stems cells and the pathways to aging and cancer. Cell 132, 681–696 (2008).
    Article CAS Google Scholar
  13. Goyama, S. et al. Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell stem cell 3, 207–220 (2008).
    Article CAS Google Scholar
  14. Kim, I., Saunders, T. L. & Morrison, S. J. Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell 130, 470–483 (2007).
    Article CAS Google Scholar
  15. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).
    Article CAS Google Scholar
  16. Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat. Genet. 40, 1291–1299 (2008).
    Article CAS Google Scholar
  17. Du, Y., Jenkins, N. A. & Copeland, N. G. Insertional mutagenesis identifies genes that promote the immortalization of primary bone marrow progenitor cells. Blood 106, 3932–3939 (2005).
    Article CAS Google Scholar
  18. Deneault, E. et al. A functional screen to identify novel effectors of hematopoietic stem cell activity. Cell 137, 369–379 (2009).
    Article CAS Google Scholar
  19. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).
    Article CAS Google Scholar
  20. Kiel, M. J., Yilmaz, O. H. & Morrison, S. J. CD150- cells are transiently reconstituting multipotent progenitors with little or no stem cell activity. Blood 111, 4413–4414 (2008).
    Article CAS Google Scholar
  21. Ren, T., Zhang, J., Plachez, C., Mori, S. & Richards, L. J. Diffusion tensor magnetic resonance imaging and tract-tracing analysis of Probst bundle structure in Netrin1- and DCC-deficient mice. J. Neurosci. 27, 10345–10349 (2007).
    Article CAS Google Scholar
  22. West, A. K., Hidalgo, J., Eddins, D., Levin, E. D. & Aschner, M. Metallothionein in the central nervous system: roles in protection, regeneration and cognition. Neurotoxicology 29, 489–503 (2008).
    Article CAS Google Scholar
  23. Ozaki, M., Haga, S., Zhang, H. Q., Irani, K. & Suzuki, S. Inhibition of hypoxia/reoxygenation-induced oxidative stress in HGF-stimulated antiapoptotic signaling: role of PI3-K and Akt kinase upon rac1. Cell Death Differ. 10, 508–515 (2003).
    Article CAS Google Scholar
  24. Yoon, Y. S., Lee, J. H., Hwang, S. C., Choi, K. S. & Yoon, G. TGF β1 induces prolonged mitochondrial ROS generation through decreased complex IV activity with senescent arrest in Mv1Lu cells. Oncogene 24, 1895–1903 (2005).
    Article CAS Google Scholar
  25. Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483–495 (2005).
    Article CAS Google Scholar
  26. Liu, J. et al. Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 459, 387–392 (2009).
    Article CAS Google Scholar
  27. Nishino, J., Kim, I., Chada, K. & Morrison, S. J. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell 135, 227–239 (2008).
    Article CAS Google Scholar
  28. Irizarry, R. A. et al. Exploration, normalization and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).
    Article Google Scholar
  29. Shamir, R. et al. EXPANDER--an integrative program suite for microarray data analysis. BMC Bioinformatics 6, 232 (2005).
    Article Google Scholar

Download references