Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting (original) (raw)
Johnston, L. A. Competitive interactions between cells: death, growth, and geography. Science324, 1679–1682 (2009). ArticleCAS Google Scholar
Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol.161, 1163–1177 (2003). ArticleCAS Google Scholar
Ghabrial, A. S. & Krasnow, M. A. Social interactions among epithelial cells during tracheal branching morphogenesis. Nature441, 746–749 (2006). ArticleCAS Google Scholar
Affolter, M. & Caussinus, E. Tracheal branching morphogenesis in Drosophila: new insights into cell behaviour and organ architecture. Development135, 2055–2064 (2008). ArticleCAS Google Scholar
Roca, C. & Adams, R. H. Regulation of vascular morphogenesis by Notch signaling. Genes Dev.21, 2511–2524 (2007). ArticleCAS Google Scholar
Ruhrberg, C. et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev.16, 2684–2698 (2002). ArticleCAS Google Scholar
Olsson, A. K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling - in control of vascular function. Nat. Rev. Mol. Cell Biol.7, 359–371 (2006). ArticleCAS Google Scholar
Hiratsuka, S., Minowa, O., Kuno, J., Noda, T. & Shibuya, M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl Acad. Sci. USA95, 9349–9354 (1998). ArticleCAS Google Scholar
Park, J. E., Chen, H. H., Winer, J., Houck, K. A. & Ferrara, N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem.269, 25646–25654 (1994). CAS Google Scholar
Fong, G. H., Rossant, J., Gertsenstein, M. & Breitman, M. L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature376, 66–70 (1995). ArticleCAS Google Scholar
Kappas, N. C. et al. The VEGF receptor Flt-1 spatially modulates Flk-1 signaling and blood vessel branching. J. Cell Biol.181, 847–858 (2008). ArticleCAS Google Scholar
Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature380, 435–439 (1996). ArticleCAS Google Scholar
Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature380, 439–442 (1996). ArticleCAS Google Scholar
Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature445, 776–780 (2007). Article Google Scholar
Leslie, J. D. et al. Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development134, 839–844 (2007). ArticleCAS Google Scholar
Lobov, I. B. et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc. Natl Acad. Sci. USA104, 3219–3224 (2007). ArticleCAS Google Scholar
Siekmann, A. F. & Lawson, N. D. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature445, 781–784 (2007). ArticleCAS Google Scholar
Suchting, S. et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Natl Acad. Sci. USA104, 3225–3230 (2007). ArticleCAS Google Scholar
Williams, C. K., Li, J. L., Murga, M., Harris, A. L. & Tosato, G. Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood107, 931–939 (2006). ArticleCAS Google Scholar
Harrington, L. S. et al. Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells. Microvasc. Res.75, 144–154 (2008). ArticleCAS Google Scholar
Holderfield, M. T. et al. HESR1/CHF2 suppresses VEGFR2 transcription independent of binding to E-boxes. Biochem. Biophys. Res. Commun.346, 637–648 (2006). ArticleCAS Google Scholar
Suchting, S. et al. Negative regulators of vessel patterning. Novartis Found Symp.283, 77–80; discussion 80–86, 238–241 (2007). ArticleCAS Google Scholar
Hayashi, H. & Kume, T. Foxc transcription factors directly regulate Dll4 and Hey2 expression by interacting with the VEGF-Notch signaling pathways in endothelial cells. PLoS ONE3, e2401 (2008). Article Google Scholar
Liu, Z. J. et al. Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol. Cell Biol.23, 14–25 (2003). Article Google Scholar
Bentley, K., Gerhardt, H. & Bates, P. A. Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. J. Theor. Biol.250, 25–36 (2008). ArticleCAS Google Scholar
Jakobsson, L., Domogatskaya, A., Tryggvason, K., Edgar, D. & Claesson-Welsh, L. Laminin deposition is dispensable for vasculogenesis but regulates blood vessel diameter independent of flow. Faseb J.22, 1530–1539 (2008). ArticleCAS Google Scholar
Jakobsson, L., Kreuger, J. & Claesson-Welsh, L. Building blood vessels—stem cell models in vascular biology. J. Cell Biol.177, 751–755 (2007). ArticleCAS Google Scholar
Sainson, R. C. et al. Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. Faseb J.19, 1027–1029 (2005). ArticleCAS Google Scholar
Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature445, 776–780 (2007). Article Google Scholar
Phng, L. K. et al. Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev. Cell16, 70–82 (2009). ArticleCAS Google Scholar
Lamar, E. et al. Nrarp is a novel intracellular component of the Notch signaling pathway. Genes Dev.15, 1885–1899 (2001). ArticleCAS Google Scholar
Gampel, A. et al. VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment. Blood108, 2624–2631 (2006). ArticleCAS Google Scholar
Chappell, J. C., Taylor, S. M., Ferrara, N. & Bautch, V. L. Local guidance of emerging vessel sprouts requires soluble Flt-1. Dev. Cell17, 377–386 (2009). ArticleCAS Google Scholar
Tammela, T. et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature454, 656–660 (2008). ArticleCAS Google Scholar
Isogai, S., Lawson, N. D., Torrealday, S., Horiguchi, M. & Weinstein, B. M. Angiogenic network formation in the developing vertebrate trunk. Development130, 5281–5290 (2003). ArticleCAS Google Scholar
Lu, P. F., Ewald, A. J., Martin, G. R. & Werb, Z. Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev. Biol.321, 77–87 (2008). ArticleCAS Google Scholar
Chi, X. et al. Ret-dependent cell rearrangements in the wolffian duct epithelium initiate ureteric bud morphogenesis. Dev. Cell17, 199–209 (2009). ArticleCAS Google Scholar
Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl Acad. Sci. USA90, 8424–8428 (1993). ArticleCAS Google Scholar
Vintersten, K. et al. Mouse in red: red fluorescent protein expression in mouse ES cells, embryos and adult animals. Genesis40, 241–246 (2004). ArticleCAS Google Scholar
Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature376, 62–66 (1995). ArticleCAS Google Scholar
Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Monk, M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature326, 292–295 (1987). ArticleCAS Google Scholar
Jakobsson, L. et al. Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev. Cell10, 625–634 (2006). ArticleCAS Google Scholar
Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett.407, 313–319 (1997). ArticleCAS Google Scholar
Jin, S. W., Beis, D., Mitchell, T., Chen, J. N. & Stainier, D. Y. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development132, 5199–5209 (2005). ArticleCAS Google Scholar
Hogan, B. M. et al. Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat. Genet.41, 396–398 (2009). ArticleCAS Google Scholar
Lawson, N. D. & Weinstein, B. M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol.248, 307–318 (2002). ArticleCAS Google Scholar
Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol.22, 1567–1572 (2004). ArticleCAS Google Scholar
Urasaki, A., Morvan, G. & Kawakami, K. Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics174, 639–649 (2006). ArticleCAS Google Scholar