Inferring rules of lineage commitment in haematopoiesis (original) (raw)

References

  1. Enver, T., Pera, M., Peterson, C. & Andrews, P. W. Stem cell states, fates, and the rules of attraction. Cell Stem. Cell 4, 387–397 (2009).
    Article CAS Google Scholar
  2. Canham, M. A., Sharov, A. A., Ko, M. S. H. & Brickman, J. M. Functional heterogeneity of embryonic stem cells revealed through translational amplification of an early endodermal transcript. PLoS Biol. 8, e1000379 (2010).
    Article Google Scholar
  3. Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007).
    Article CAS Google Scholar
  4. Hayashi, K., Lopes, S. M., Tang, F. & Surani, M. A. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem. Cell 3, 391–401 (2008).
    Article CAS Google Scholar
  5. Hough, S. R., Laslett, A. L., Grimmond, S. B., Kolle, G. & Pera, M. F. A continuum of cell states spans pluripotency and lineage commitment in human embryonic stem cells. PLoS One 4, e7708 (2009).
    Article Google Scholar
  6. Kalmar, T. et al. Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol. 7, e1000149 (2009).
    Article Google Scholar
  7. Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544–547 (2008).
    Article CAS Google Scholar
  8. Bussmann, L. H. et al. A robust and highly efficient immune cell reprogramming system. Cell Stem. Cell 5, 554–566 (2009).
    Article CAS Google Scholar
  9. Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).
    Article CAS Google Scholar
  10. Feng, R. et al. PU.1 and C/EBP α/β convert fibroblasts into macrophage-like cells. Proc. Natl Acad. Sci. USA 105, 6057–6062 (2008).
    Article CAS Google Scholar
  11. Graf, T. & Enver, T. Forcing cells to change lineages. Nature 462, 587–594 (2009).
    Article CAS Google Scholar
  12. Heyworth, C., Pearson, S., May, G. & Enver, T. Transcription factor-mediated lineage switching reveals plasticity in primary committed progenitor cells. EMBO J. 21, 3770–3781 (2002).
    Article CAS Google Scholar
  13. Iwasaki, H. et al. GATA-1 converts lymphoid and myelomonocytic progenitors into the megakaryocyte/erythrocyte lineages. Immunity 19, 451–462 (2003).
    Article CAS Google Scholar
  14. Weintraub, H. et al. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl Acad. Sci. USA 86, 5434–5438 (1989).
    Article CAS Google Scholar
  15. Tsai, S., Bartelmez, S., Sitnicka, E. & Collins, S. Lymphohematopoietic progenitors immortalized by a retroviral vector harboring a dominant-negative retinoic acid receptor can recapitulate lymphoid, myeloid, and erythroid development. Genes Dev. 8, 2831–2841 (1994).
    Article CAS Google Scholar
  16. Ye, Z. J., Kluger, Y., Lian, Z. & Weissman, S. M. Two types of precursor cells in a multipotential hematopoietic cell line. Proc. Natl Acad. Sci. USA 102, 18461–18466 (2005).
    Article CAS Google Scholar
  17. Kim, S. I. & Bresnick, E. H. Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene 26, 6777–6794 (2007).
    Article CAS Google Scholar
  18. Capron, C. et al. LYL-1 deficiency induces a stress erythropoiesis. Exp. Hematol. 39, 629–642 (2011).
    Article CAS Google Scholar
  19. Pronk, C. J. et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem. Cell 1, 428–442 (2007).
    Article CAS Google Scholar
  20. Pina, C., May, G., Soneji, S., Hong, D. & Enver, T. MLLT3 regulates early human erythroid and megakaryocytic cell fate. Cell Stem. Cell 2, 264–273 (2008).
    Article CAS Google Scholar
  21. Rodrigues, N. P. et al. Haploinsufficiency of GATA-2 perturbs adult hematopoietic stem-cell homeostasis. Blood 106, 477–484 (2005).
    Article CAS Google Scholar
  22. Tipping, A. J. et al. High GATA-2 expression inhibits human hematopoietic stem and progenitor cell function by effects on cell cycle. Blood 113, 2661–2672 (2009).
    Article CAS Google Scholar
  23. Porcher, C. et al. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86, 47–57 (1996).
    Article CAS Google Scholar
  24. Wray, J., Kalkan, T. & Smith, A. G. The ground state of pluripotency. Biochem. Soc. Trans. 38, 1027–1032 (2010).
    Article CAS Google Scholar
  25. Coulombel, L. Identification of hematopoietic stem/progenitor cells: strength and drawbacks of functional assays. Oncogene 23, 7210–7222 (2004).
    Article CAS Google Scholar
  26. Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood lineage commitment. Cell 121, 295–306 (2005).
    Article CAS Google Scholar
  27. Huang, S., Eichler, G., Bar-Yam, Y. & Ingber, D. E. Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys. Rev. Lett. 94, 128701 (2005).
    Article Google Scholar
  28. Orford, K. et al. Differential H3K4 methylation identifies developmentally poised hematopoietic genes. Dev. Cell 14, 798–809 (2008).
    Article CAS Google Scholar
  29. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic. Acids Res. 29, e45 (2001).
    Article CAS Google Scholar
  30. Hu, M. et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev. 11, 774–785 (1997).
    Article CAS Google Scholar
  31. Smyth, G. K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet Mol. Biol. 3, 1–25 (2004).
    Article Google Scholar

Download references