Inferring rules of lineage commitment in haematopoiesis (original) (raw)
References
Enver, T., Pera, M., Peterson, C. & Andrews, P. W. Stem cell states, fates, and the rules of attraction. Cell Stem. Cell4, 387–397 (2009). ArticleCAS Google Scholar
Canham, M. A., Sharov, A. A., Ko, M. S. H. & Brickman, J. M. Functional heterogeneity of embryonic stem cells revealed through translational amplification of an early endodermal transcript. PLoS Biol.8, e1000379 (2010). Article Google Scholar
Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature450, 1230–1234 (2007). ArticleCAS Google Scholar
Hayashi, K., Lopes, S. M., Tang, F. & Surani, M. A. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem. Cell3, 391–401 (2008). ArticleCAS Google Scholar
Hough, S. R., Laslett, A. L., Grimmond, S. B., Kolle, G. & Pera, M. F. A continuum of cell states spans pluripotency and lineage commitment in human embryonic stem cells. PLoS One4, e7708 (2009). Article Google Scholar
Kalmar, T. et al. Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol.7, e1000149 (2009). Article Google Scholar
Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature453, 544–547 (2008). ArticleCAS Google Scholar
Bussmann, L. H. et al. A robust and highly efficient immune cell reprogramming system. Cell Stem. Cell5, 554–566 (2009). ArticleCAS Google Scholar
Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell51, 987–1000 (1987). ArticleCAS Google Scholar
Feng, R. et al. PU.1 and C/EBP α/β convert fibroblasts into macrophage-like cells. Proc. Natl Acad. Sci. USA105, 6057–6062 (2008). ArticleCAS Google Scholar
Graf, T. & Enver, T. Forcing cells to change lineages. Nature462, 587–594 (2009). ArticleCAS Google Scholar
Heyworth, C., Pearson, S., May, G. & Enver, T. Transcription factor-mediated lineage switching reveals plasticity in primary committed progenitor cells. EMBO J.21, 3770–3781 (2002). ArticleCAS Google Scholar
Iwasaki, H. et al. GATA-1 converts lymphoid and myelomonocytic progenitors into the megakaryocyte/erythrocyte lineages. Immunity19, 451–462 (2003). ArticleCAS Google Scholar
Weintraub, H. et al. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl Acad. Sci. USA86, 5434–5438 (1989). ArticleCAS Google Scholar
Tsai, S., Bartelmez, S., Sitnicka, E. & Collins, S. Lymphohematopoietic progenitors immortalized by a retroviral vector harboring a dominant-negative retinoic acid receptor can recapitulate lymphoid, myeloid, and erythroid development. Genes Dev.8, 2831–2841 (1994). ArticleCAS Google Scholar
Ye, Z. J., Kluger, Y., Lian, Z. & Weissman, S. M. Two types of precursor cells in a multipotential hematopoietic cell line. Proc. Natl Acad. Sci. USA102, 18461–18466 (2005). ArticleCAS Google Scholar
Kim, S. I. & Bresnick, E. H. Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene26, 6777–6794 (2007). ArticleCAS Google Scholar
Capron, C. et al. LYL-1 deficiency induces a stress erythropoiesis. Exp. Hematol.39, 629–642 (2011). ArticleCAS Google Scholar
Pronk, C. J. et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem. Cell1, 428–442 (2007). ArticleCAS Google Scholar
Pina, C., May, G., Soneji, S., Hong, D. & Enver, T. MLLT3 regulates early human erythroid and megakaryocytic cell fate. Cell Stem. Cell2, 264–273 (2008). ArticleCAS Google Scholar
Rodrigues, N. P. et al. Haploinsufficiency of GATA-2 perturbs adult hematopoietic stem-cell homeostasis. Blood106, 477–484 (2005). ArticleCAS Google Scholar
Tipping, A. J. et al. High GATA-2 expression inhibits human hematopoietic stem and progenitor cell function by effects on cell cycle. Blood113, 2661–2672 (2009). ArticleCAS Google Scholar
Porcher, C. et al. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell86, 47–57 (1996). ArticleCAS Google Scholar
Wray, J., Kalkan, T. & Smith, A. G. The ground state of pluripotency. Biochem. Soc. Trans.38, 1027–1032 (2010). ArticleCAS Google Scholar
Coulombel, L. Identification of hematopoietic stem/progenitor cells: strength and drawbacks of functional assays. Oncogene23, 7210–7222 (2004). ArticleCAS Google Scholar
Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood lineage commitment. Cell121, 295–306 (2005). ArticleCAS Google Scholar
Huang, S., Eichler, G., Bar-Yam, Y. & Ingber, D. E. Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys. Rev. Lett.94, 128701 (2005). Article Google Scholar
Orford, K. et al. Differential H3K4 methylation identifies developmentally poised hematopoietic genes. Dev. Cell14, 798–809 (2008). ArticleCAS Google Scholar
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic. Acids Res.29, e45 (2001). ArticleCAS Google Scholar
Hu, M. et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev.11, 774–785 (1997). ArticleCAS Google Scholar
Smyth, G. K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet Mol. Biol.3, 1–25 (2004). Article Google Scholar