Distinct and separable activities of the endocytic clathrin-coat components Fcho1/2 and AP-2 in developmental patterning (original) (raw)
Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature422, 37–44 (2003). ArticleCAS Google Scholar
McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol.12, 517–533 (2011). ArticleCAS Google Scholar
Kirchhausen, T. Imaging endocytic clathrin structures in living cells. Trends Cell Biol.19, 596–605 (2009). ArticleCAS Google Scholar
Kelly, B. T. & Owen, D. J. Endocytic sorting of transmembrane protein cargo. Curr. Opin. Cell Biol.23, 404–412 (2011). ArticleCAS Google Scholar
Reider, A. & Wendland, B. Endocytic adaptors—social networking at the plasma membrane. J. Cell Sci.124, 1613–1622 (2011). ArticleCAS Google Scholar
Traub, L. M. Tickets to ride: Selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol. Cell Biol.10, 583–596 (2009). ArticleCAS Google Scholar
Taylor, M. J., Perrais, D. & Merrifield, C. J. A high precision survery of the molecular dynamics of mammalian clathrin mediated endocytosis. PLoS Biol.9, e1000604 (2011). ArticleCAS Google Scholar
Schmid, E. M. & McMahon, H. T. Integrating molecular and network biology to decode endocytosis. Nature448, 883–888 (2007). ArticleCAS Google Scholar
Boucrot, E., Saffarian, S., Massol, R., Kirchhausen, T. & Ehrlich, M. Role of lipids and actin in the formation of clathrin-coated pits. Exp. Cell Res.312, 4036–4048 (2006). ArticleCAS Google Scholar
Zoncu, R. et al. Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4, 5-bisphosphate. Proc. Natl Acad. Sci. USA104, 3793–3798 (2007). ArticleCAS Google Scholar
Jackson, L. P. et al. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell141, 1220–1229 (2010). ArticleCAS Google Scholar
Henne, W. M. et al. FCHo proteins are nucleators of clathrin-mediated endocytosis. Science328, 1281–1284 (2010). ArticleCAS Google Scholar
Little, S. C. & Mullins, M. C. Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nat. Cell Biol.11, 637–643 (2009). CASPubMedPubMed Central Google Scholar
Mintzer, K. A. et al. Lost-a-fin encodes a type I BMP receptor, Alk8, acting maternally and zygotically in dorsoventral pattern formation. Development128, 859–869 (2001). CAS Google Scholar
Reider, A. et al. Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation. EMBO J.28, 3103–3016 (2009). ArticleCAS Google Scholar
Katoh, M. Identification and characterization of human FCHO2 and mouse Fcho2 genes in silico. Int. J. Mol Med.14, 327–331 (2004). CASPubMed Google Scholar
Stimpson, H. E., Toret, C. P., Cheng, A. T., Pauly, B. S. & Drubin, D. G. Early-arriving Syp1p and Ede1p function in endocytic site placement and formation in budding yeast. Mol. Biol. Cell20, 4640–4651 (2009). ArticleCAS Google Scholar
Boettner, D. R. et al. The F-BAR protein Syp1 negatively regulates WASp-Arp2/3 complex activity during endocytic patch formation. Curr. Biol.19, 1979–1987 (2009). ArticleCAS Google Scholar
Uezu, A. et al. Characterization of the EFC/F-BAR domain protein, FCHO2. Genes Cells16, 868–878 (2011). ArticleCAS Google Scholar
Zoncu, R. et al. A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell136, 1110–1121 (2009). ArticleCAS Google Scholar
Henne, W. M. et al. Structure and analysis of FCHo2 F-BAR domain: A dimerizing and membrane recruitment module that effects membrane curvature. Structure15, 839–852 (2007). ArticleCAS Google Scholar
Edeling, M. A., Smith, C. & Owen, D. Life of a clathrin coat: Insights from clathrin and AP structures. Nat. Rev. Mol. Cell Biol.7, 32–44 (2006). ArticleCAS Google Scholar
Edeling, M. A. et al. Molecular switches involving the AP-2 β2 appendage regulate endocytic cargo selection and clathrin coat assembly. Dev. Cell10, 329–342 (2006). ArticleCAS Google Scholar
Schmid, E. M. et al. Role of the AP2 β-appendage hub in recruiting partners for clathrin coated vesicle assembly. PLoS Biol.4, e262 (2006). Article Google Scholar
Mishra, S. K. et al. Dual-engagement regulation of protein interactions with the AP-2 adaptor α appendage. J. Biol. Chem.279, 46191–46203 (2004). ArticleCAS Google Scholar
Praefcke, G. J. et al. Evolving nature of the AP2 α-appendage hub during clathrin-coated vesicle endocytosis. EMBO J.23, 4371–4383 (2004). ArticleCAS Google Scholar
Hinrichsen, L., Harborth, J., Andrees, L., Weber, K. & Ungewickell, E. J. Effect of clathrin heavy chain- and α-adaptin specific small interfering RNAs on endocytic accessory proteins and receptor trafficking in HeLa cells. J. Biol. Chem.278, 45160–45170 (2003). ArticleCAS Google Scholar
Motley, A., Bright, N. A., Seaman, M. N. & Robinson, M. S. Clathrin-mediated endocytosis in AP-2-depleted cells. J. Cell Biol.162, 909–918 (2003). ArticleCAS Google Scholar
Uezu, A. et al. SGIP1 α is an endocytic protein that directly interacts with phospholipids and Eps15. J. Biol. Chem.282, 26481–26489 (2007). ArticleCAS Google Scholar
Yamabhai, M. et al. Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J. Biol. Chem.273, 31401–31407 (1998). ArticleCAS Google Scholar
Koh, T. W. et al. Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development. J. Cell Biol.178, 309–322 (2007). ArticleCAS Google Scholar
Sengar, A. S., Wang, W., Bishay, J., Cohen, S. & Egan, S. E. The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J.18, 1159–1171 (1999). ArticleCAS Google Scholar
Imai, Y. & Talbot, W. S. Morpholino phenocopies of the bmp2b/swirl and bmp7/snailhouse mutations. Genesis30, 160–163 (2001). ArticleCAS Google Scholar
Mullins, M. C. et al. Genes establishing dorsoventral pattern formationin the zebrafish embryo: The ventral specifying genes. Development123, 81–93 (1996). CAS Google Scholar
Schier, A. F. & Talbot, W. S. Molecular genetics of axis formation in zebrafish. Annu. Rev. Genet.39, 561–613 (2005). CASPubMed Google Scholar
Tucker, J. A., Mintzer, K. A. & Mullins, M. C. The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. Dev. Cell14, 108–119 (2008). ArticleCAS Google Scholar
Robu, M. E. et al. p53 activation by knockdown technologies. PLoS Genet.3, e78 (2007). Article Google Scholar
Schulte-Merker, S., Lee, K. J., McMahon, A. P. & Hammerschmidt, M. The zebrafish organizer requires chordino. Nature387, 862–863 (1997). ArticleCAS Google Scholar
von der Hardt, S. et al. The Bmp gradient of the zebrafish gastrula guidesmigrating lateral cells by regulating cell–cell adhesion. Curr. Biol.17, 475–487 (2007). ArticleCAS Google Scholar
Bauer, H., Lele, Z., Rauch, G. J., Geisler, R. & Hammerschmidt, M. The type I serine/threonine kinase receptor Alk8/Lost-a-fin is required for Bmp2b/7 signal transduction during dorsoventral patterning of the zebrafish embryo. Development128, 849–858 (2001). CAS Google Scholar
Payne, T. L., Postlethwait, J. H. & Yelick, P. C. Functional characterization and genetic mapping of alk8. Mech. Dev.100, 275–289 (2001). ArticleCAS Google Scholar
Solnica-Krezel, L. Gastrulation in zebrafish—all just about adhesion? Curr. Opin. Genet. Dev.16, 433–441 (2006). ArticleCAS Google Scholar
Borner, G. H. et al. CVAK104 is a novel regulator of clathrin-mediated SNARE sorting. Traffic8, 893–903 (2007). ArticleCAS Google Scholar
Tsang, M. et al. A role for MKP3 in axial patterning of the zebrafish embryo. Development131, 2769–2779 (2004). ArticleCAS Google Scholar
Yu, S. R. et al. Fgf8 morphogen gradient forms by a source–sink mechanism with freely diffusing molecules. Nature461, 533–536 (2009). ArticleCAS Google Scholar
Scholpp, S. & Brand, M. Endocytosis controls spreading and effective signaling range of Fgf8 protein. Curr. Biol14, 1834–1841 (2004). ArticleCAS Google Scholar
Molina, G. A., Watkins, S. C. & Tsang, M. Generation of FGF reporter transgenic zebrafish and their utility in chemical screens. BMC Dev. Biol.7, 62 (2007). Article Google Scholar
Furthauer, M., Van Celst, J., Thisse, C. & Thisse, B. Fgf signalling controls the dorsoventral patterning of the zebrafish embryo. Development131, 2853–2864 (2004). Article Google Scholar
Sorkin, A. & von Zastrow, M. Endocytosis and signalling: Intertwining molecular networks. Nat. Rev. Mol. Cell Biol.10, 609–922 (2009). ArticleCAS Google Scholar
Belenkaya, T. Y. et al. Drosophila Dpp morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans. Cell119, 231–244 (2004). ArticleCAS Google Scholar
O’Connor-Giles, K. M., Ho, L. L. & Ganetzky, B. Nervous wreck interacts with thickveins and the endocytic machinery to attenuate retrograde BMP signaling during synaptic growth. Neuron58, 507–518 (2008). Article Google Scholar
Wang, W. & Struhl, G. Distinct roles for Mind bomb, Neuralized and Epsin in mediating DSL endocytosis and signaling in Drosophila. Development132, 2883–2894 (2005). ArticleCAS Google Scholar
Hartung, A. et al. Different routes of bone morphogenic protein (BMP) receptor endocytosis influence BMP signaling. Mol. Cell Biol.26, 7791–7805 (2006). ArticleCAS Google Scholar
Heining, E., Bhushan, R., Paarmann, P., Henis, Y. I. & Knaus, P. Spatial segregation of BMP/Smad signaling affects osteoblast differentiation in C2C12 cells. PLoS One6, e25163 (2011). ArticleCAS Google Scholar
Zhou, Y. et al. Receptor internalization-independent activation of Smad2 in activin signaling. Mol. Endocrinol.18, 1818–1826 (2004). ArticleCAS Google Scholar
Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L. & Wrana, J. L. SARA, a FYVE domain protein that recruits Smad2 to the TGFb receptor. Cell95, 779–791 (1998). ArticleCAS Google Scholar
Lin, H. K., Bergmann, S. & Pandolfi, P. P. Cytoplasmic PML function in TGF-β signalling. Nature431, 205–211 (2004). ArticleCAS Google Scholar
Di Guglielmo, G. M., Le Roy, C., Goodfellow, A. F. & Wrana, J. L. Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat. Cell Biol.5, 410–421 (2003). ArticleCAS Google Scholar
Hayes, S., Chawla, A. & Corvera, S. TGF β receptor internalization into EEA1-enriched early endosomes: Role in signaling to Smad2. J. Cell Biol.158, 1239–1249 (2002). ArticleCAS Google Scholar
Shi, W. et al. Endofin acts as a Smad anchor for receptor activation in BMP signaling. J. Cell Sci.120, 1216–1224 (2007). ArticleCAS Google Scholar
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn.203, 253–310 (1995). ArticleCAS Google Scholar
Barrios-Rodiles, M. et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science307, 1621–1625 (2005). ArticleCAS Google Scholar
Jullien, J. & Gurdon, J. Morphogen gradient interpretation by a regulated trafficking step during ligand-receptor transduction. Genes Dev.19, 2682–2694 (2005). ArticleCAS Google Scholar
Mitsunari, T. et al. Clathrin adaptor AP-2 is essential for early embryonal development. Mol. Cell. Biol.25, 9318–9323 (2005). ArticleCAS Google Scholar
Hart, N. H. & Collins, G. C. An electron-microscope and freeze-fracture study of the egg cortex of Brachydanio rerio. Cell Tissue Res.265, 317–328 (1991). ArticleCAS Google Scholar
Feng, B., Schwarz, H. & Jesuthasan, S. Furrow-specific endocytosis during cytokinesis of zebrafish blastomeres. Exp. Cell Res.279, 14–20 (2002). ArticleCAS Google Scholar
von Kleist, L. et al. Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition. Cell146, 471–484 (2011). ArticleCAS Google Scholar
Thieman, J. R. et al. Clathrin regulates the association of PIPKI γ661 with the AP-2 adaptor β2 appendage. J. Biol. Chem.284, 13924–13939 (2009). ArticleCAS Google Scholar
Edeling, M. A. et al. Structural requirements for PACSIN/Syndapin operation during zebrafish embryonic notochord development. PLoS One4, e8150 (2009). Article Google Scholar