The BBSome controls IFT assembly and turnaround in cilia (original) (raw)
Pedersen, L. B. & Rosenbaum, J. L. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr. Top. Dev. Biol.85, 23–61 (2008). ArticleCASPubMed Google Scholar
Scholey, J. M. & Anderson, K. V. Intraflagellar transport and cilium-based signaling. Cell125, 439–442 (2006). ArticleCASPubMed Google Scholar
Nachury, M. V. et al. A core complex of BBS proteins cooperates with theGTPase Rab8 to promote ciliary membrane biogenesis. Cell129, 1201–1213 (2007). ArticleCASPubMed Google Scholar
Loktev, A. V. et al. A BBSome subunit links ciliogenesis, microtubule stability, and acetylation. Dev. Cell15, 854–865 (2008). ArticleCASPubMed Google Scholar
Zaghloul, N. A. & Katsanis, N. Mechanistic insights into Bardet–Biedl syndrome, a model ciliopathy. J. Clin. Invest.119, 428–437 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nat. Rev. Mol. Cell Biol.3, 813–825 (2002). ArticleCASPubMed Google Scholar
Pedersen, L. B., Geimer, S. & Rosenbaum, J. L. Dissecting the molecular mechanisms of intraflagellar transport in Chlamydomonas. Curr. Biol.16, 450–459 (2006). ArticleCASPubMed Google Scholar
Hedgecock, E. M., Culotti, J. G., Thomson, J. N. & Perkins, L. A. Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev. Biol.111, 158–170 (1985). ArticleCASPubMed Google Scholar
Efimenko, E. et al. Caenorhabditis elegans DYF-2, an orthologue of human WDR19, is a component of the intraflagellar transport machinery in sensory cilia. Mol. Biol. Cell17, 4801–4811 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ou, G., Blacque, O. E., Snow, J. J., Leroux, M. R. & Scholey, J. M. Functional coordination of intraflagellar transport motors. Nature436, 583–587 (2005). ArticleCASPubMed Google Scholar
Snow, J. J. et al. Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat. Cell Biol.6, 1109–1113 (2004). ArticleCASPubMed Google Scholar
Hu, C. D., Chinenov, Y. & Kerppola, T. K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell9, 789–798 (2002). ArticleCASPubMed Google Scholar
Cole, D. G. et al. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol.141, 993–1008 (1998). ArticleCASPubMedPubMed Central Google Scholar
Iomini, C., Li, L., Esparza, J. M. & Dutcher, S. K. Retrograde intraflagellar transport mutants identify complex A proteins with multiple genetic interactions in Chlamydomonas reinhardtii. Genetics183, 885–896 (2009). ArticleCASPubMedPubMed Central Google Scholar
Piperno, G. et al. Distinct mutants of retrograde intraflagellar transport (IFT) share similar morphological and molecular defects. J. Cell Biol.143, 1591–1601 (1998). ArticleCASPubMedPubMed Central Google Scholar
Iomini, C., Babaev-Khaimov, V., Sassaroli, M. & Piperno, G. Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases. J. Cell Biol.153, 13–24 (2001). ArticleCASPubMedPubMed Central Google Scholar
Liem, K. F. Jr et al. The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking. J. Cell Biol.197, 789–800 (2012). ArticleCASPubMedPubMed Central Google Scholar
Pazour, G. J., Wilkerson, C. G. & Witman, G. B. A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J. Cell Biol.141, 979–992 (1998). ArticleCASPubMedPubMed Central Google Scholar
Signor, D. et al. Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J. Cell Biol.147, 519–530 (1999). ArticleCASPubMedPubMed Central Google Scholar
Schafer, J. C., Haycraft, C. J., Thomas, J. H., Yoder, B. K. & Swoboda, P. XBX-1 encodes a dynein light intermediate chain required for retrograde intraflagellar transport and cilia assembly in Caenorhabditis elegans. Mol. Biol. Cell14, 2057–2070 (2003). ArticleCASPubMedPubMed Central Google Scholar
Fliegauf, M., Benzing, T. & Omran, H. When cilia go bad: cilia defects and ciliopathies. Nat. Rev. Mol. Cell Biol.8, 880–893 (2007). ArticleCASPubMed Google Scholar
Li, J. B. et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell117, 541–552 (2004). ArticleCASPubMed Google Scholar
Lechtreck, K. F. et al. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J. Cell Biol.187, 1117–1132 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tayeh, M. K. et al. Genetic interaction between Bardet–Biedl syndrome genes and implications for limb patterning. Human Mol. Genet.17, 1956–1967 (2008). ArticleCAS Google Scholar
Yen, H. J. et al. Bardet–Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer’s vesicle cilia function. Human Mol. Genet.15, 667–677 (2006). ArticleCAS Google Scholar
Fath, M. A. et al. Mkks-null mice have a phenotype resembling Bardet–Biedl syndrome. Human Mol. Genet.14, 1109–1118 (2005). ArticleCAS Google Scholar
Mykytyn, K. et al. Bardet–Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc. Natl Acad. Sci. USA101, 8664–8669 (2004). ArticleCASPubMedPubMed Central Google Scholar
Nishimura, D. Y. et al. Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proc. Natl Acad. Sci. USA101, 16588–16593 (2004). ArticleCASPubMedPubMed Central Google Scholar
Shah, A. S. et al. Loss of Bardet–Biedl syndrome proteins alters the morphology and function of motile cilia in airway epithelia. Proc. Natl Acad. Sci. USA105, 3380–3385 (2008). ArticleCASPubMedPubMed Central Google Scholar
Davis, R. E. et al. A knockin mouse model of the Bardet–Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity. Proc. Natl Acad. Sci. USA104, 19422–19427 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ou, G. et al. Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles. Mol. Biol. Cell18, 1554–1569 (2007). ArticleCASPubMedPubMed Central Google Scholar
Pan, X. et al. Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors. J. Cell Biol.174, 1035–1045 (2006). ArticleCASPubMedPubMed Central Google Scholar
Blacque, O. E. et al. Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. Genes Dev.18, 1630–1642 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tran, P. V. et al. THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nat. Genet.40, 403–410 (2008). ArticleCASPubMedPubMed Central Google Scholar
May, S.R. et al. Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev. Biol.287, 378–389 (2005). ArticleCASPubMed Google Scholar
Berbari, N. F., Lewis, J. S., Bishop, G. A., Askwith, C. C. & Mykytyn, K. Bardet–Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc. Natl Acad. Sci. USA105, 4242–4246 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jin, H. et al. The conserved Bardet–Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell141, 1208–1219 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gerdes, J. M. et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat. Genet.39, 1350–1360 (2007). ArticleCASPubMed Google Scholar
Kim, J. C. et al. The Bardet–Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat. Genet.36, 462–470 (2004). ArticleCASPubMed Google Scholar
Davis, M.W. et al. Rapid single nucleotide polymorphism mapping in C. elegans. BMC Genom.6, 118 (2005). Article Google Scholar
Li, Y., Wei, Q., Zhang, Y., Ling, K. & Hu, J. The small GTPases ARL-13 and ARL-3 coordinate intraflagellar transport and ciliogenesis. J. Cell Biol.189, 1039–1051 (2010). ArticleCASPubMedPubMed Central Google Scholar
Shyu, Y. J. et al. Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis. Nat. Protocol.3, 588–596 (2008). ArticleCAS Google Scholar