Dll1+ secretory progenitor cells revert to stem cells upon crypt damage (original) (raw)
Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature449, 1003–1007 (2007). ArticleCAS Google Scholar
Marshman, E., Booth, C. & Potten, C. S. The intestinal epithelial stem cell. Bioessays.24, 91–98 (2002). Article Google Scholar
Gerbe, F. et al. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J. Cell. Biol.192, 767–780 (2011). ArticleCAS Google Scholar
Cheng, H. & Leblond, C. P. Origin differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am. J. Anat.141, 461–479 (1974). ArticleCAS Google Scholar
Bjerknes, M. & Cheng, H. Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology116, 7–14 (1999). ArticleCAS Google Scholar
Cheng, H. & Leblond, C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am. J. Anat.141, 537–561 (1974). ArticleCAS Google Scholar
Ireland, H., Houghton, C., Howard, L. & Winton, D. J. Cellular inheritance of a Cre-activated reporter gene to determine Paneth cell longevity in the murine small intestine. Dev. Dynam.233, 1332–1336 (2005). ArticleCAS Google Scholar
Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature.469, 415–418 (2011). ArticleCAS Google Scholar
Riccio, O. et al. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep.4, 377–383 (2008). Article Google Scholar
Jensen, J. et al. Control of endodermal endocrine development by Hes-1. Nat. Genet.24, 36–44 (2000). ArticleCAS Google Scholar
Van Es, J. H. et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature.435, 959–963 (2005). ArticleCAS Google Scholar
Yang, Q., Bermingham, N. A., Finegold, M. J. & Zoghbi, H. Y. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science.294, 2155–2158 (2001). ArticleCAS Google Scholar
Shroyer, N. F. et al. Intestine-specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. Gastroenterology.132, 2478–2488 (2007). ArticleCAS Google Scholar
Van Es, J. H., de Geest, N., van de Born, M., Clevers, H. & Hassan, B. A. Intestinal stem cells lacking the Math1 tumour suppressor are refractory to Notch inhibitors. Nat. Commun.1, 8 (2010). Article Google Scholar
Milano, J. et al. Modulation of notch processing by γ-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci.82, 341–358 (2004). ArticleCAS Google Scholar
Wu, Y. et al. Therapeutic antibody targeting of individual Notch receptors. Nature.464, 1052–1057 (2010). ArticleCAS Google Scholar
Pellegrinet, L. et al. Dll1- and dll4-mediated Notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology140, 1230–1240 (2011). ArticleCAS Google Scholar
Crosnier, C. et al. Dll-Notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development.132, 1093–1104 (2005). ArticleCAS Google Scholar
Beckers, J. et al. Expression of the mouse Dll1 gene during organogenesis and fetal development. Mech. Dev.84, 165–168 (1999). ArticleCAS Google Scholar
Stamataki, D. et al. Dll1 expression, cell cycle exit, and commitment to a specific secretory fate coincide within a few hours in the mouse intestinal stem cell system. PLoS One.6, e24484 (2011). ArticleCAS Google Scholar
Von Furstenberg, R. J. et al. Sorting mouse jejunal epithelial cells with CD24 yields a population with characteristics of intestinal stem cells. Am. J. Physiol. Gastrointest Liver Physiol.300, G409–G417 (2011). ArticleCAS Google Scholar
Jenny, M. et al. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J.21, 6338–6347 (2002). ArticleCAS Google Scholar
Noah, T. K., Kazanjian, A., Whitsett, J. & Shroyer, N. F. SAM pointed domain ETS factor (SPDEF) regulates terminal differentiation and maturation of intestinal goblet cells. Exp. Cell Res.316, 452–465 (2010). ArticleCAS Google Scholar
Gregorieff, A. et al. The ets-domain transcription factor Spdef promotes maturation of goblet and Paneth cells in the intestinal epithelium. Gastroenterology137, 1333–1345 (2009). ArticleCAS Google Scholar
Bjerknes, M. & Cheng, H. Cell Lineage metastability in Gfi1-deficient mouse intestinal epithelium. Dev. Biol.345, 49–63 (2010). ArticleCAS Google Scholar
Van der Flier, L. G., Haegebarth, A., Stange, D. E., van de Wetering, M. & Clevers, H. OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology137, 15–17 (2009). Article Google Scholar
Muñoz, J. et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J.31, 3079–3091 (2012). Article Google Scholar
Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature478, 255–259 (2011). ArticleCAS Google Scholar
Ireland, H. et al. Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of β-catenin. Gastroenterology126, 1236–1246 (2004). ArticleCAS Google Scholar
Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell143, 134–144 (2010). ArticleCAS Google Scholar
Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods10, 877–879 (2008). Article Google Scholar
Itzkovitz, S. et al. Single-molecule transcript counting of stem-cell markers in the mouse intestine. Nat. Cell Biol.14, 106–114 (2011). Article Google Scholar
Schepers, A. G., Vries, R., van den Born, M., van de Wetering, M. & Clevers, H. Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes. EMBO J.30, 1104–1109 (2011). ArticleCAS Google Scholar
Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature459, 262–265 (2009). ArticleCAS Google Scholar
Axelrod, J. D. Delivering the lateral inhibition punch line: it’s all about the timing. Sci. Signal.3, pe38 (2010). Article Google Scholar
Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet.40, 915–920 (2008). ArticleCAS Google Scholar
Kai, T. et al. Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature428, 564–569 (2004). ArticleCAS Google Scholar
Brawley, C. & Matunis, E. Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science304, 1331–1334 (2004). ArticleCAS Google Scholar
Davies, E. J., Marsh, V. & Clarke, A. R. Origin and maintenance of the intestinal cancer stem cell. Mol. Carcinog50, 254–263 (2011). ArticleCAS Google Scholar
Anderson, E. C., Hessman, C., Levin, T. G., Monroe, M. M. & Wong, M. H. The role of colorectal cancer stem cells in metastatic disease and therapeutic response. Cancers3, 319–339 (2011). Article Google Scholar
Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature57, 608–611 (2009). Article Google Scholar