Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair (original) (raw)
Murphy, G., Young, A. R., Wulf, H. C., Kulms, D. & Schwarz T. The molecular determinants of sunburn cell formation. Exp. Dermatol.10, 155–160 (2001). ArticleCASPubMed Google Scholar
Kulms, D. et al. Nuclear and cell membrane effects contribute independently to the induction of apoptosis in human cells exposed to UVB radiation. Proc. Natl Acad. Sci. USA96, 7974–7979 (1999). ArticleCASPubMedPubMed Central Google Scholar
Stege, H. et al. Enzyme plus light therapy to repair DNA damage in ultraviolet-B-irradiated human skin. Proc. Natl Acad. Sci. USA97, 1790–1795 (2000). ArticleCASPubMedPubMed Central Google Scholar
Aragane, Y. et al. Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J. Cell. Biol.140, 171–182 (1998). ArticleCASPubMedPubMed Central Google Scholar
Rehemtulla, A., Hamilton, C. A., Chinnaiyan, A. M. & Dixit, V. M. Ultraviolet radiation-induced apoptosis is mediated by activation of CD-95 (Fas/APO-1). J. Biol. Chem.272, 25783–25786 (1997). ArticleCASPubMed Google Scholar
Sheikh, M. S., Antinore, M. J., Huang, Y. & Fornace, A. J. Jr. Ultraviolet-irradiation-induced apoptosis is mediated via ligand independent activation of tumour necrosis factor receptor 1. Oncogene17, 2555–2563 (1998). ArticleCASPubMed Google Scholar
Schwarz, A. et al. UVB induced apoptosis of keratinocytes. Evidence for partial involvement of tumour necrosis factor α in the formation of sunburn cells. J. Invest. Dermatol.104, 922–927 (1995). ArticleCASPubMed Google Scholar
Hill, L. L. et al. Fas ligand: a sensor for DNA damage critical in skin cancer etiology. Science285, 898–900 (1999). ArticleCASPubMed Google Scholar
Leverkus, M., Yaar, M. & Gilchrest, B. A. Fas/Fas ligand interaction contributes to UV-induced apoptosis in human keratinocytes. Exp. Cell. Res.232, 255–262 (1997). ArticleCASPubMed Google Scholar
Gloster, H. M. & Brodland, D. G. The epidemiology of skin cancer. Dermatol. Surg.22, 217–226 (1996). PubMed Google Scholar
Kothny-Wilkes et al. Interleukin-1 protects transformed keratinocytes from TRAIL-induced apoptosis. J. Biol. Chem.273, 29247–29253 (1998). ArticleCASPubMed Google Scholar
Kothny-Wilkes, G., Kulms, D., Luger, T. A., Kubin, M. & Schwarz, T. Interleukin-1 protects transformed keratinocytes from tumour necrosis factor-related apoptosis-inducing ligand- and CD95-induced apoptosis but not from ultraviolet radiation-induced apoptosis. J. Biol. Chem.274, 28916–28921 (1999). ArticleCASPubMed Google Scholar
Luger, T. A. & Schwarz, T. Effects of UV-light on cytokines and neuroendocrine hormones. In Photoimmunology (eds Elmets, C. & Krutmann, J.) 55–76 (1995). Google Scholar
Patrick, M. H. Studies on thymine-derived UV photoproducts in DNA I. Formation and biological role of pyrimidine adducts in DNA. Photochem. Photobiol.25, 357–372 (1977). ArticleCASPubMed Google Scholar
Aragane, Y. et al. IL-12 is expressed and released by human keratinocytes and epidermoid carcinoma cell lines. J. Immunol.153, 5366–5372 (1994). CASPubMed Google Scholar
Koch, F. et al. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J. Exp. Med.184, 741–746 (1996). ArticleCASPubMed Google Scholar
Magram, J. et al. IL-12-deficient mice are defective in IFN gamma production and type 1 cytokine responses. Immunity4, 471–481 (1996). ArticleCASPubMed Google Scholar
de Laat, W. L., Jaspers, N. G. & Hoeijmakers, J. H. Molecular mechanism of nucleotide excision repair. Genes Dev. 13, 768–785 (1999). ArticleCASPubMed Google Scholar
Rünger, T. M., Möller, K., Jung, T. & Dekant, B. DNA damage formation, DNA repair, and survival after exposure of DNA repair-proficient and nucleotide excision repair-deficient human lymphoblasts to UVA1 and UVB. Int. J. Radiat. Biol.76, 789–797 (2000). ArticlePubMed Google Scholar
Fairbairn, D. W., Olive, P. L. & O' Neill, K. L. The comet assay: a comprehensive review. Mutat. Res.339; 37–59 (1995). ArticleCASPubMed Google Scholar
Arlett, C. F. et al. Hypersensitivity of human lymphocytes to UV-B and solar irradiation. Cancer Res.53, 609–614 (1993). CASPubMed Google Scholar
Green, M. H. et al. UV-C sensitivity of unstimulated and stimulated human lymphocytes from normal and xeroderma pigmentosum donors in the comet assay: a potential diagnostic technique. Mutat. Res.273, 137–144 (1992). ArticleCASPubMed Google Scholar
de Vries, A. et al. Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature377, 169–173 (1995). ArticleCASPubMed Google Scholar
van Oosten, M. et al. Differential role of transcription-coupled repair in UVB-induced G2 arrest and apoptosis in mouse epidermis. Proc. Natl Acad. Sci. USA97, 11268–11273 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kraemer, K. H., Lee, M. M., Andrews, A. D. & Lambert, W. C. The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. The xeroderma pigmentosum paradigm. Arch. Dermatol.130, 1018–1021 (1994). ArticleCASPubMed Google Scholar
Simon, M. M. et al. Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts. J. Clin. Invest.95, 926–933 (1995). ArticleCASPubMedPubMed Central Google Scholar
Duckett, C. S. et al. Human IAP-like protein regulates programmed cell death downstream of bcl-xL and cytochrome c. Mol. Cell. Biol.18, 608–615 (1998) ArticleCASPubMedPubMed Central Google Scholar
Wright, S. C., Wang, H., Wei, Q. S., Kinder, D. H. & Larrick, J. W. Bcl-2-mediated resistance to apoptosis is associated with glutathione-induced inhibition of AP24 activation of nuclear DNA fragmentation. Cancer Res.58, 5570–5576 (1998). CASPubMed Google Scholar
O'Donovan, A., Davies, A. A., Moggs, J. G., West, S. C. & Wood, R. D. XPG endonuclease makes the 3' incision in human DNA nucleotide excision repair. Nature.371, 432–435 (1994). ArticleCASPubMed Google Scholar
Mu, D., Hsu, D. S. & Sancar, A. Reaction mechanism of human DNA repair excision nuclease. J. Biol. Chem.271, 8285–8294 (1996). ArticleCASPubMed Google Scholar
de Laat, W. L., Jaspers, N. G. & Hoeijmakers, J. H. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev.13, 768–785 (1999). ArticleCASPubMed Google Scholar
Kenny, M. K., Schlegel, U., Furneaux, H. & Hurwitz, J. The role of human single-stranded DNA binding protein and its individual subunits in simian virus 40 DNA replication. J. Biol. Chem.265, 7693–700 (1990). CASPubMed Google Scholar
Zernik-Kobak, M., Vasunia, K., Connelly, M., Anderson, C. W. & Dixon, K. Sites of UV-induced phosphorylation of the p34 subunit of replication protein A from HeLa cells. J. Biol. Chem.272, 23896–23904 (1997). ArticleCASPubMed Google Scholar
Hwang, B. J. & Chu, G. Purification and characterization of a human protein that binds to damaged DNA. Biochemistry32, 1657–1666 (1993). ArticleCASPubMed Google Scholar
Hwang, B. J., Ford, J. M., Hanawalt, P. C. & Chu, G. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc. Natl Acad. Sci. USA96, 424–428 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature411, 366–374 (2001). ArticleCASPubMed Google Scholar
Yarosh, D. et al. Localization of liposomes containing a DNA repair enzyme in murine skin. J. Invest. Dermatol.103, 461–468 (1994). ArticleCASPubMed Google Scholar
Yarosh, D. et al. Pyrimidine dimer removal enhanced by DNA repair liposomes reduces the incidence of UV skin cancer in mice. Cancer Res.52, 4227–4231 (1992). CASPubMed Google Scholar
Wolf, P., Cox, P., Yarosh, D. B. & Kripke, M. L. Sunscreens and T4N5 liposomes differ in their ability to protect against ultraviolet-induced sunburn cell formation, alterations of dendritic epidermal cells, and local suppression of contact hypersensitivity. J. Invest. Dermatol.104, 287–292 (1995). ArticleCASPubMed Google Scholar
Eller, M. S., Maeda, T., Magnoni, C., Atwal, D. & Gilchrest, B. A. Enhancement of DNA repair in human skin cells by thymidine dinucleotides: evidence for a p53-mediated mammalian SOS response. Proc. Natl Acad. Sci. USA94, 12627–12632. (1997). ArticleCASPubMedPubMed Central Google Scholar
Lehman, T. A. et al. p53 mutations in human immortalized epithelial cell lines. Carcinogenesis14, 833–839 (1993). ArticleCASPubMed Google Scholar
Trinchieri, G. Interleukin-12 and its role in the generation of Th1 cells. Immunol. Today14, 335–338 (1993). ArticleCASPubMed Google Scholar
Schwarz, A. et al. Interleukin-12 prevents UVB-induced local immunosuppression and overcomes UVB-induced tolerance. J. Invest. Dermatol.106, 1187–1191 (1996). ArticleCASPubMed Google Scholar
Rivas, J. M. & Ullrich, S. E. Systemic suppression of DTH by supernatants from UV-irradiated keratinocytes: an essential role for IL-10. J. Immunol.148, 3133–3139 (1992). Google Scholar
Nishigori, C. et al. Evidence that DNA damage triggers interleukin 10 cytokine production in UV-irradiated murine keratinocytes. Proc. Natl Acad. Sci. USA93, 10354–10359 (1996). ArticleCASPubMedPubMed Central Google Scholar
Schmitt, D. A., Walterscheid, J. P. & Ullrich, S. E. Reversal of ultraviolet radiation-induced immune suppression by recombinant interleukin-12: suppression of cytokine production. Immunology101, 90–96 (2000). ArticleCASPubMedPubMed Central Google Scholar