Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48 (original) (raw)

References

  1. Sommer, T. & Wolf, D. H. Endoplasmic reticulum degradation: reverse protein flow of no return. FASEB J. 11, 1227–1233 (1997).
    Article CAS Google Scholar
  2. Kopito, R. R. ER quality control: the cytoplasmic connection. Cell 88, 427–430 (1997).
    Article CAS Google Scholar
  3. Bonifacino, J. S. & Weissman, A. M. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu. Rev. Cell. Dev. Biol. 14, 19–57 (1998).
    Article CAS Google Scholar
  4. Plemper, R. K. & Wolf, D. H. Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem. Sci. 24, 266–270 (1999).
    Article CAS Google Scholar
  5. Wiertz, E. J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438 (1996).
    Article CAS Google Scholar
  6. Plemper, R. K., Bohmler, S., Bordallo, J., Sommer, T. & Wolf, D. H. Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388, 891–895 (1997).
    Article CAS Google Scholar
  7. Pilon, M., Schekman, R. & Römisch, K. Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J. 16, 4540–4548 (1997).
    Article CAS Google Scholar
  8. Biederer, T., Volkwein, C. & Sommer, T. Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278, 1806–1808 (1997).
    Article CAS Google Scholar
  9. Mayer, T. U., Braun, T. & Jentsch, S. Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein. EMBO J. 17, 3251–3257 (1998).
    Article CAS Google Scholar
  10. Bordallo, J., Plemper, R. K., Finger, A. & Wolf, D. H. Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol. Biol. Cell 9, 209–222 (1998).
    Article CAS Google Scholar
  11. Yu, H., Kaung, G., Kobayashi, S. & Kopito, R. R. Cytosolic degradation of T-cell receptor α-chains by the proteasome. J. Biol. Chem. 272, 20800–20804 (1997).
    Article CAS Google Scholar
  12. Chillaron J. & Haas I. G. Dissociation from BiP and retrotranslocation of unassembled immunoglobulin light chains are tightly coupled to proteasome activity. Mol. Biol. Cell. 11, 217–226 (2000).
    Article CAS Google Scholar
  13. Yu H. & Kopito R. R. The role of multiubiquitination in dislocation and degradation of the α-subunit of the T cell antigen receptor. J. Biol. Chem. 274, 36852–36858 (1999).
    Article CAS Google Scholar
  14. de Virgilio M., Weninger H. & Ivessa N. E. Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J. Biol. Chem. 273, 9734–9743 (1998).
    Article CAS Google Scholar
  15. Shamu, C. E., Story, C. M., Rapoport, T. A. & Ploegh, H. L. The pathway of US11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. J. Cell Biol. 147, 45–58 (1999).
    Article CAS Google Scholar
  16. Bays, N. W., Gardner, R. G., Seelig, L. P., Joazeiro, C. A. & Hampton, R. Y. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nature Cell Biol. 3, 24–29 (2001).
    Article CAS Google Scholar
  17. Deak, P. M. & Wolf, D. H. Membrane topology and function of Der3/Hrd1p as a ubiquitin-protein ligase (E3) involved in endoplasmic reticulum degradation. J. Biol. Chem. 276, 10663–10669 (2001).
    Article CAS Google Scholar
  18. Hiller, M. M., Finger, A., Schweiger, M. & Wolf, D. H. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273, 1725–1728 (1996).
    Article CAS Google Scholar
  19. Friedlander, R., Jarosch, E., Urban, J., Volkwein, C. & Sommer, T. A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nature Cell Biol. 2, 379–384 (2000).
    Article CAS Google Scholar
  20. Finley, D. et al. Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Mol. Cell. Biol. 14, 5501–5509 (1994).
    Article CAS Google Scholar
  21. Heinemeyer. W., Kleinschmidt, J. A., Saidowsky, J., Escher, C. & Wolf, D. H. Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J. 10, 555–562 (1991).
    Article CAS Google Scholar
  22. Heinemeyer, W., Fischer, M., Krimmer, T., Stachon, U. & Wolf, D. H. The active sites of the eukaryotic 20S proteasome and their involvement in subunit precursor processing. J. Biol. Chem. 272, 25200–25209 (1997).
    Article CAS Google Scholar
  23. Rubin, D. M., Glickman, M. H., Larsen, C. N., Dhruvakumar, S. & Finley, D. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J. 17, 4909–4919 (1998).
    Article CAS Google Scholar
  24. Kohler, A., et al. The axial channel of the proteasome core particle is gated by the Rpt2 Atpase and controls both substrate entry and product release. Mol. Cell 7, 1143–1152 (2001).
    Article CAS Google Scholar
  25. Johnson, E. S., Ma, P. C., Ota, I. M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442–17456 (1995).
    Article CAS Google Scholar
  26. Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102, 577–586 (2000).
    Article CAS Google Scholar
  27. Madeo, F., Frohlich, E. & Frohlich, K. U. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139, 729–734 (1997).
    Article CAS Google Scholar
  28. Travers, K. J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258 (2000).
    Article CAS Google Scholar
  29. Meyer, H. H., Shorter, J. G., Seemann, J., Pappin, D. & Warren, G. A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 19, 2181–2192 (2000).
    Article CAS Google Scholar
  30. Rouiller, I., Butel, V. M., Latterich, M., Milligan, R. A. & Wilson-Kubalek, E. M. A major conformational change in p97 AAA-ATPase upon ATP binding. Mol. Cell 6, 1485–1490 (2000).
    Article CAS Google Scholar
  31. Dai, R. M. & Li, C.-C. H. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin–proteasome degradation. Nature Cell Biol. 3, 740–744 (2001).
    Article CAS Google Scholar
  32. Ausubel, F. M., et al. Current Protocols in Molecular Biology, John Wiley and Sons, New York, USA (1989).
    Google Scholar
  33. Walter, J., Urban, J., Volkwein, C. & Sommer, T. Sec61p-independent degradation of the tail-anchored ER membrane protein Ubc6p. EMBO J. 20, 3124–3131 (2001).
    Article CAS Google Scholar
  34. Knop, M., Finger, A., Braun, T., Hellmuth, K. & Wolf, D. H. Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J. 15, 753–763 (1996).
    Article CAS Google Scholar
  35. Hitchcock A. L., et al. The conserved npl4 protein complex mediates proteasome-dependent membrane-bound transcription factor activation. Mol. Biol. Cell 12, 3226–3241 (2001).
    Article CAS Google Scholar
  36. Mori, K. et al. A 22 bp _cis_-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins. EMBO J. 11, 2583–2593 (1992).
    Article CAS Google Scholar
  37. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).
    Article CAS Google Scholar

Download references