A distinct class of endosome mediates clathrin-independent endocytosis to the Golgi complex (original) (raw)

Nature Cell Biology volume 4, pages 374–378 (2002)Cite this article

An Addendum to this article was published on 01 June 2002

Abstract

Mammalian cells endocytose a variety of proteins and lipids without utilising clathrin-coated pits1,2,3,4,5. Detailed molecular mechanisms for clathrin-independent endocytosis are unclear. Several markers for this process, including glycosphingolipid-binding bacterial toxin subunits such as cholera toxin B subunit (CTxB), and glycosyl-phosphatidyl-inositol (GPI)-anchored proteins, are found in detergent-resistant membrane fractions (DRMs), or 'lipid rafts'2,3,5,6,7. The Golgi complex constitutes one principal intracellular destination for these markers2. Uptake of both CTxB and GPI-anchored proteins may involve caveolae, small invaginations in the plasma membrane (PM)8,9,10,11,12,13. However, the identity of intermediate organelles involved in PM to Golgi trafficking, as well as the function of caveolins, defining protein components of caveolae12,13, are unclear. This paper shows that molecules which partition into DRMs and are endocytosed in a clathrin-independent fashion, accumulate in a discrete population of endosomes en route to the Golgi complex. These endosomes are devoid of markers for classical early and recycling endosomes, but do contain caveolin-1. Caveolin-1-positive endosomes are sites for the sorting of caveolin-1 away from Golgi-bound cargoes, although caveolin-1 itself is unlikely to have a direct function in PM to Golgi transport.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 print issues and online access

$209.00 per year

only $17.42 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Puri, V. et al. J. Cell Biol. 154, 535–547 (2001).
    Article CAS Google Scholar
  2. Nichols, B. J. et al. J. Cell Biol. 153, 529–541 (2001).
    Article CAS Google Scholar
  3. Nichols, B. J. & Lippincott-Schwartz, J. Trends Cell Biol. 11, 406–412 (2001).
    Article CAS Google Scholar
  4. Iversen, T. G. et al. Mol. Biol. Cell 12, 2099–2107 (2001).
    Article CAS Google Scholar
  5. Lamaze, C. et al. Mol. Cell 7, 661–671 (2001).
    Article CAS Google Scholar
  6. Brown, D,A. & London, E. Annu. Rev. Cell. Dev. Biol. 14, 111–136 (1998).
    Article CAS Google Scholar
  7. Simons, K. & Ikonen, E. Nature 387, 569–572 (1997).
    Article CAS Google Scholar
  8. Orlandi, P. A. & Fishman, P. H. J. Cell Biol. 141, 905–915 (1998).
    Article CAS Google Scholar
  9. Torgersen, M. L., Skretting, G., van Deurs, B. & Sandvig, K. J. Cell Sci. 114, 3737–3747 (2001).
    CAS PubMed Google Scholar
  10. Henley, J. R., Krueger, E. W., Oswald, B. J. & McNiven, M. A. J. Cell Biol. 141, 85–99 (1998).
    Article CAS Google Scholar
  11. Oh, P., McIntosh, D. P. & Schnitzer, J. E. J. Cell Biol. 141, 101–114 (1998).
    Article CAS Google Scholar
  12. Razani, B. & Lisanti, M. P. Exp. Cell Res. 271, 36–44 (2001).
    Article CAS Google Scholar
  13. Kurzchalia, T. V. & Parton, R. G. Curr. Opin. Cell Biol. 11, 424–431 (1999).
    Article CAS Google Scholar
  14. Pelkmans, L., Kartenbeck, J. & Helenius, A. Nature Cell Biol. 3, 473–483 (2001).
    Article CAS Google Scholar
  15. Scheiffele, P. et al. J. Cell Biol. 140, 795–806 (1998).
    Article CAS Google Scholar
  16. Shogomori, H. & Futerman, A. H. J. Biol. Chem. 276, 9182–9188 (2001).
    Article CAS Google Scholar
  17. Ford, M. G., et al. Science 291, 1051–1055 (2001).
    Article CAS Google Scholar
  18. Stenmark, H., Aasland, R., Toh, B. H. and D'Arrigo, A. J. Biol. Chem. 271, 24048–24054 (1996).
    Article CAS Google Scholar
  19. Elbashir, S. M. et al. Nature 411, 494–498 (2001).
    Article CAS Google Scholar
  20. Razani, B. et al. J. Biol. Chem. 276, 38121–38138 (2001).
    Article CAS Google Scholar
  21. Drab, M. et al. Science 293, 2449–2452 (2001).
    Article CAS Google Scholar
  22. Schubert, W. et al. J. Biol. Chem. 276, 48619–48622 (2001).
    Article CAS Google Scholar
  23. Chatterjee, S., Smith, E. R., Hanada, K., Stevens, V. L. & Mayor, S. EMBO J. 20, 1583–1592 (2001).
    Article CAS Google Scholar
  24. Lipardi, C. Nitsch, L. & Zurzolo, C. Mol. Biol. Cell 11, 531–542 (2000).
    Article CAS Google Scholar
  25. Benting, J. H., Rietveld, A. G. & Simons, K. J. Cell. Biol. 146, 313–320 (1999).
    Article CAS Google Scholar
  26. Abrami, L. et al. J. Biol. Chem. 276, 30729–30736 (2001).
    Article CAS Google Scholar
  27. Oh, P. & Schnitzer, J. E. Mol. Biol. Cell 12, 685–698 (2001).
    Article CAS Google Scholar
  28. Schnitzer, J. E., Oh, P. & McIntosh, D. P. Science 274, 239–242 (1996).
    Article CAS Google Scholar

Download references

Acknowledgements

Many thanks to P. Pipkin for assistance with SV40 infection, A. Helenius and L. Pelkmans for caveolin-1–GFP and the anti-SV40 antibodies, H. McMahon for the AP180-C construct, and H. Pelham and S. Munro for comments on the manuscript.

Author information

Authors and Affiliations

  1. MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
    Benjamin J. Nichols

Authors

  1. Benjamin J. Nichols
    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toBenjamin J. Nichols.

Supplementary information

Rights and permissions

About this article

Cite this article

Nichols, B. A distinct class of endosome mediates clathrin-independent endocytosis to the Golgi complex.Nat Cell Biol 4, 374–378 (2002). https://doi.org/10.1038/ncb787

Download citation

This article is cited by