Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1 (original) (raw)

References

  1. Jacobson, M. D., Weil, M. & Raff, M. C. Programmed cell death in animal development. Cell 88, 347–354 (1997).
    Article CAS PubMed Google Scholar
  2. Hengartner, M. O. The biochemistry of apoptosis. Nature 407, 685–687 (2000).
    Article Google Scholar
  3. Goyal, L. Cell death inhibition: keeping caspases in check. Cell 104, 805–808 (2001).
    Article CAS PubMed Google Scholar
  4. Hay, B. A., Wassarman, D. A. & Rubin, G. M. Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83,1253–1262 (1995).
    Article CAS PubMed Google Scholar
  5. Wang, S. L., Hawkins, C. J., Yoo, S. J., Muller, H. A. & Hay, B. A. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98, 453–463 (1999).
    Article CAS PubMed Google Scholar
  6. Goyal, L., McCall, K., Agapite, J., Hartwieg, E. & Steller, H. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J. 19, 589–597 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  7. Lisi, S., Mazzon, I. & White, K. Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 154, 669–678 (2000).
    CAS PubMed PubMed Central Google Scholar
  8. Wu, J. W., Cocina, A. E., Chai, J., Hay, B. A. & Shi, Y. Structural analysis of a functional DIAP1 fragment bound to grim and hid peptides. Mol. Cell 8, 95–104 (2001).
    Article CAS PubMed Google Scholar
  9. White, K., Grether, M. E., Abrams, J. M., Young, L., Farrell, K. & Steller, H. Genetic control of programmed cell death in Drosophila. Science 264, 677–683 (1994).
    Article CAS PubMed Google Scholar
  10. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP proteins. Cell 102, 33–42 (2000).
    Article CAS PubMed Google Scholar
  11. Verhagen, A. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–54 (2000).
    Article CAS PubMed Google Scholar
  12. Hegde, R. et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts IAP-caspase interaction. J. Biol. Chem. 277, 432–438 (2002).
    Article CAS PubMed Google Scholar
  13. Martins, L. M. et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a Reaper-like motif. J. Biol. Chem. 277, 439–444 (2002).
    Article CAS PubMed Google Scholar
  14. Suzuki, Y. et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8, 613–621 (2001).
    Article CAS PubMed Google Scholar
  15. Verhagen, A. et al. HtrA2 promotes cell death through its serine protease activity and its ability to antagonise inhibitor of apoptosis proteins. J. Biol. Chem. 277, 445–454 (2001).
    Article PubMed Google Scholar
  16. Joazeiro, C. A. & Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549–552 (2000).
    Article CAS PubMed Google Scholar
  17. Huang, H. K. et al. The inhibitor of apoptosis, cIAP2, functions as a ubiquitin protein ligase and promotes in vitro monoubiquitination of caspase 3 and 7. J. Biol. Chem. 275, 26661–26664 (2000).
    CAS PubMed Google Scholar
  18. Suzuki, Y., Nakabayashi, Y. & Takahashi, R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc. Natl Acad. Sci. USA 98, 8662–8667 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  19. Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M. & Ashwell, J. D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877 (2000).
    Article CAS PubMed Google Scholar
  20. Blair, S. S. Mechnisms of compartment formation: evidence that non-proliferating cells do not play a critical role in defining the D/V lineage restriction in the developing wing of Drosophila. Development 119, 339–351 (1993).
    CAS PubMed Google Scholar
  21. Clem, R. J., Fechneimer, M. & Miller, L. K. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254, 1388–1390 (1991).
    Article CAS PubMed Google Scholar
  22. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).
    CAS PubMed Google Scholar
  23. Baker, N. E. & Yu, S. Y. The EGF receptor defines domains of cell cycle progression and survival to regulate cell number in the developing Drosophila eye. Cell 104, 699–708 (2000).
    Article Google Scholar
  24. Srinivasan, A. et al. In situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system. Cell Death Differ. 5, 1004–1016 (1998).
    Article CAS PubMed Google Scholar
  25. Bergmann, A., Agapite, J., McCall, K. & Steller, H. The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95, 331–341 (1998).
    Article CAS PubMed Google Scholar
  26. Kurada, P. & White, K. Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 95, 319–329 (1998).
    Article CAS PubMed Google Scholar
  27. Wilson, P. et al. The RING finger of DIAP1 is essential for regulating apoptosis. Nature Cell Biol. DOI: 10.1038/ncb799.
  28. Saville, K. J. & Belote, J. M. Identification of an essential gene, l(3)73Ai, with a dominant temperature-sensitive lethal allele, encoding a Drosophila proteasome subunit. Proc. Natl Acad. Sci. USA 90, 8842–8846 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  29. Fischer-Vize, J. A., Rubin, G. M. & Lehmann, R. The fat facets gene is required for Drosophila eye and embryo development. Development 116, 985–1000 (1992).
    CAS PubMed Google Scholar
  30. Treier, M., Seufert, W. & Jentsch, S. Drosophila UbcD1 encodes a highly conserved ubiquitin conjugating enzyme involved in selective protein degradation. EMBO J. 11, 367–372 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  31. Cenci, G. et al. ubcD1, a Drosophila ubiquitin-conjugating enzyme required for proper telomere behaviour. Genes Dev. 11, 863–875 (1997).
    Article CAS PubMed Google Scholar
  32. Neufeld, T. P., Tang, A. H. & Rubin G. M. A genetic screen to identify components of the sina signaling pathway in Drosophila eye development. Genetics 148, 277–286 (1998).
    CAS PubMed PubMed Central Google Scholar
  33. Matuschewski, K., Hauser, H. P., Treier, M. & Jentsch, S. Identification of a novel family of ubiquitin-conjugating enzymes with distinct amino-terminal extensions. J. Biol. Chem. 271, 2789–2794 (1996).
    Article CAS PubMed Google Scholar
  34. Meier, P., Silke, J., Leevers, S. J. & Evan, G. I. The Drosophila caspase DRONC is regulated by DIAP1. EMBO J. 19, 598–611 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  35. Quinn, L. M. et al. An essential role for the caspase dronc in developmentally programmed cell death in Drosophila. J. Biol. Chem. 275, 40416–40424 (2000).
    Article CAS PubMed Google Scholar
  36. Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).
    CAS PubMed Google Scholar
  37. Kanuka, H. et al. Control of the cell death pathway by Dapaf-1, a Drosophila Apaf-1/CED-4-related caspase activator. Mol. Cell 4, 757–769 (1999).
    Article CAS PubMed Google Scholar
  38. Rodriguez, A. et al. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nature Cell Biol. 1, 272–279 (1999).
    Article CAS PubMed Google Scholar
  39. Gaumer, S., Guenal, I., Brun, S., Theodore, L. & Mignotte, B. bcl-2 and bax mammalian regulators of apoptosis are functional in Drosophila. Cell Death Differ. 7, 804–814 (2000).
    Article CAS PubMed Google Scholar
  40. Baehrecke, E. H. Steroid regulation of programmed cell death during Drosophila development. Cell Death Differ. 7, 1057–1062 (2000).
    Article CAS PubMed Google Scholar
  41. Lee, C. Y. et al. E93 directs steroid-triggered programmed cell death in Drosophila. Mol. Cell 6, 433–443 (2000).
    Article CAS PubMed Google Scholar
  42. Jiang C., Lamblin, A. F., Steller H. & Thummel C. S. A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol. Cell 5, 445–455 (2000).
    Article CAS PubMed Google Scholar
  43. Tamm et. al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin. Cancer Res. 6, 1796–1803 (2000).
    CAS PubMed Google Scholar
  44. White, K., Tahaoglu, E., Steller, H. Cell killing by the Drosophila gene reaper. Science 271, 805–807 (1996).
    Article CAS PubMed Google Scholar
  45. Grether, M. E., Abrams, J. M., Agapite, J., White, K. & Steller, H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev. 9, 1694–1708 (1995).
    Article CAS PubMed Google Scholar
  46. Zhou, L. et al. Cooperative functions of the reaper and head involution defective genes in programmed cell death of Drosophila CNS midline cells. Proc. Natl Acad. Sci. USA 94, 5131–5136 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  47. Spradling, A. C. et al. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153, 135–177 (1999).
    CAS PubMed PubMed Central Google Scholar
  48. Calleja, M. & Morata, G. Visualization of gene expression in living adult Drosophila. Science 274, 252–255 (1996).
    Article CAS PubMed Google Scholar
  49. Cohen, B., Simcox, A. A. & Cohen, S. M. Allocation of the thoracic imaginal primordia in the Drosophila embryo. Development 117, 597–608 (1993).
    CAS PubMed Google Scholar
  50. Holley, C.L., Olson, M.R., Colon-Ramos, D.A. & Kornbluth S. Reaper eliminates IAP proteins through stimulated IAP degradation and generalized translational inhibition. Nature Cell Biol. DOI: 10.1038/ncb798.
  51. Hays, R., Wickline, L. & Cagan, R. Morgue mediates apoptosis in the Drosophila melanogaster retina by promoting degradation of DIAP1. Nature Cell Biol. DOI: 10.1038/ncb794.
  52. Wing et al. Drosophila Morgue is a novel F box/ubiquitin conjugase domain protein important for _grim-reaper_-mediated apoptosis. Nature Cell Biol. DOI: 10.1038/ncb800.
  53. Yoo et al. Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nature Cell Biol. DOI: 10.1038/ncb793.

Download references