Hay, B. A., Wassarman, D. A. & Rubin, G. M. Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell83,1253–1262 (1995). ArticleCASPubMed Google Scholar
Wang, S. L., Hawkins, C. J., Yoo, S. J., Muller, H. A. & Hay, B. A. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell98, 453–463 (1999). ArticleCASPubMed Google Scholar
Goyal, L., McCall, K., Agapite, J., Hartwieg, E. & Steller, H. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J.19, 589–597 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lisi, S., Mazzon, I. & White, K. Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics154, 669–678 (2000). CASPubMedPubMed Central Google Scholar
Wu, J. W., Cocina, A. E., Chai, J., Hay, B. A. & Shi, Y. Structural analysis of a functional DIAP1 fragment bound to grim and hid peptides. Mol. Cell8, 95–104 (2001). ArticleCASPubMed Google Scholar
White, K., Grether, M. E., Abrams, J. M., Young, L., Farrell, K. & Steller, H. Genetic control of programmed cell death in Drosophila. Science264, 677–683 (1994). ArticleCASPubMed Google Scholar
Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP proteins. Cell102, 33–42 (2000). ArticleCASPubMed Google Scholar
Verhagen, A. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell102, 43–54 (2000). ArticleCASPubMed Google Scholar
Hegde, R. et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts IAP-caspase interaction. J. Biol. Chem.277, 432–438 (2002). ArticleCASPubMed Google Scholar
Martins, L. M. et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a Reaper-like motif. J. Biol. Chem.277, 439–444 (2002). ArticleCASPubMed Google Scholar
Suzuki, Y. et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell8, 613–621 (2001). ArticleCASPubMed Google Scholar
Verhagen, A. et al. HtrA2 promotes cell death through its serine protease activity and its ability to antagonise inhibitor of apoptosis proteins. J. Biol. Chem.277, 445–454 (2001). ArticlePubMed Google Scholar
Joazeiro, C. A. & Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell102, 549–552 (2000). ArticleCASPubMed Google Scholar
Huang, H. K. et al. The inhibitor of apoptosis, cIAP2, functions as a ubiquitin protein ligase and promotes in vitro monoubiquitination of caspase 3 and 7. J. Biol. Chem.275, 26661–26664 (2000). CASPubMed Google Scholar
Suzuki, Y., Nakabayashi, Y. & Takahashi, R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc. Natl Acad. Sci. USA98, 8662–8667 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M. & Ashwell, J. D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science288, 874–877 (2000). ArticleCASPubMed Google Scholar
Blair, S. S. Mechnisms of compartment formation: evidence that non-proliferating cells do not play a critical role in defining the D/V lineage restriction in the developing wing of Drosophila. Development119, 339–351 (1993). CASPubMed Google Scholar
Clem, R. J., Fechneimer, M. & Miller, L. K. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science254, 1388–1390 (1991). ArticleCASPubMed Google Scholar
Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development118, 401–415 (1993). CASPubMed Google Scholar
Baker, N. E. & Yu, S. Y. The EGF receptor defines domains of cell cycle progression and survival to regulate cell number in the developing Drosophila eye. Cell104, 699–708 (2000). Article Google Scholar
Srinivasan, A. et al. In situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system. Cell Death Differ.5, 1004–1016 (1998). ArticleCASPubMed Google Scholar
Bergmann, A., Agapite, J., McCall, K. & Steller, H. The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell95, 331–341 (1998). ArticleCASPubMed Google Scholar
Kurada, P. & White, K. Ras promotes cell survival in Drosophila by downregulating hid expression. Cell95, 319–329 (1998). ArticleCASPubMed Google Scholar
Wilson, P. et al. The RING finger of DIAP1 is essential for regulating apoptosis. Nature Cell Biol. DOI: 10.1038/ncb799.
Saville, K. J. & Belote, J. M. Identification of an essential gene, l(3)73Ai, with a dominant temperature-sensitive lethal allele, encoding a Drosophila proteasome subunit. Proc. Natl Acad. Sci. USA90, 8842–8846 (1993). ArticleCASPubMedPubMed Central Google Scholar
Fischer-Vize, J. A., Rubin, G. M. & Lehmann, R. The fat facets gene is required for Drosophila eye and embryo development. Development116, 985–1000 (1992). CASPubMed Google Scholar
Treier, M., Seufert, W. & Jentsch, S. Drosophila UbcD1 encodes a highly conserved ubiquitin conjugating enzyme involved in selective protein degradation. EMBO J.11, 367–372 (1992). ArticleCASPubMedPubMed Central Google Scholar
Cenci, G. et al. ubcD1, a Drosophila ubiquitin-conjugating enzyme required for proper telomere behaviour. Genes Dev.11, 863–875 (1997). ArticleCASPubMed Google Scholar
Neufeld, T. P., Tang, A. H. & Rubin G. M. A genetic screen to identify components of the sina signaling pathway in Drosophila eye development. Genetics148, 277–286 (1998). CASPubMedPubMed Central Google Scholar
Matuschewski, K., Hauser, H. P., Treier, M. & Jentsch, S. Identification of a novel family of ubiquitin-conjugating enzymes with distinct amino-terminal extensions. J. Biol. Chem.271, 2789–2794 (1996). ArticleCASPubMed Google Scholar
Quinn, L. M. et al. An essential role for the caspase dronc in developmentally programmed cell death in Drosophila. J. Biol. Chem.275, 40416–40424 (2000). ArticleCASPubMed Google Scholar
Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development117, 1223–1237 (1993). CASPubMed Google Scholar
Kanuka, H. et al. Control of the cell death pathway by Dapaf-1, a Drosophila Apaf-1/CED-4-related caspase activator. Mol. Cell4, 757–769 (1999). ArticleCASPubMed Google Scholar
Rodriguez, A. et al. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nature Cell Biol.1, 272–279 (1999). ArticleCASPubMed Google Scholar
Gaumer, S., Guenal, I., Brun, S., Theodore, L. & Mignotte, B. bcl-2 and bax mammalian regulators of apoptosis are functional in Drosophila. Cell Death Differ.7, 804–814 (2000). ArticleCASPubMed Google Scholar
Baehrecke, E. H. Steroid regulation of programmed cell death during Drosophila development. Cell Death Differ.7, 1057–1062 (2000). ArticleCASPubMed Google Scholar
Lee, C. Y. et al. E93 directs steroid-triggered programmed cell death in Drosophila. Mol. Cell6, 433–443 (2000). ArticleCASPubMed Google Scholar
Jiang C., Lamblin, A. F., Steller H. & Thummel C. S. A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol. Cell5, 445–455 (2000). ArticleCASPubMed Google Scholar
Tamm et. al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin. Cancer Res.6, 1796–1803 (2000). CASPubMed Google Scholar
White, K., Tahaoglu, E., Steller, H. Cell killing by the Drosophila gene reaper. Science271, 805–807 (1996). ArticleCASPubMed Google Scholar
Grether, M. E., Abrams, J. M., Agapite, J., White, K. & Steller, H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev.9, 1694–1708 (1995). ArticleCASPubMed Google Scholar
Zhou, L. et al. Cooperative functions of the reaper and head involution defective genes in programmed cell death of Drosophila CNS midline cells. Proc. Natl Acad. Sci. USA94, 5131–5136 (1997). ArticleCASPubMedPubMed Central Google Scholar
Spradling, A. C. et al. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics153, 135–177 (1999). CASPubMedPubMed Central Google Scholar
Calleja, M. & Morata, G. Visualization of gene expression in living adult Drosophila. Science274, 252–255 (1996). ArticleCASPubMed Google Scholar
Cohen, B., Simcox, A. A. & Cohen, S. M. Allocation of the thoracic imaginal primordia in the Drosophila embryo. Development117, 597–608 (1993). CASPubMed Google Scholar
Holley, C.L., Olson, M.R., Colon-Ramos, D.A. & Kornbluth S. Reaper eliminates IAP proteins through stimulated IAP degradation and generalized translational inhibition. Nature Cell Biol. DOI: 10.1038/ncb798.
Hays, R., Wickline, L. & Cagan, R. Morgue mediates apoptosis in the Drosophila melanogaster retina by promoting degradation of DIAP1. Nature Cell Biol. DOI: 10.1038/ncb794.
Wing et al. Drosophila Morgue is a novel F box/ubiquitin conjugase domain protein important for _grim-reaper_-mediated apoptosis. Nature Cell Biol. DOI: 10.1038/ncb800.
Yoo et al. Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nature Cell Biol. DOI: 10.1038/ncb793.