A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly (original) (raw)
References
Nigg, E. Mitotic kinases as regulators of cell division and its checkpoints. Nature Rev. Mol. Cell Biol.2, 21–31 (2001). ArticleCAS Google Scholar
Andersen, S. Balanced regulation of microtubule dynamics during the cell cycle: a contemporary view. BioEssay21, 53–60 (1999). ArticleCAS Google Scholar
Giet, R. & Prigent, C. Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases. J. Cell Sci.112, 3591–3601 (1999). CASPubMed Google Scholar
Glover, D., Leibowitz, M.H., McLean, D.A. & Parry, H. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell81, 95–105 (1995). ArticleCASPubMed Google Scholar
Schumacher, J.M., Ashcroft, N., Donovan, P.J. & Golden, A. A highly conserved centrosomal kinase, AIR-1, is required for accurate cell cycle progression and segregation of developmental factors in Caenorhabditis elegans embryos. Development125, 4391–4402 (1998). CASPubMed Google Scholar
Hannak, E., Kirkham, M., Hyman, A.A. & Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol.155, 1109–1116 (2001). ArticleCASPubMedPubMed Central Google Scholar
Roghi, C.R. et al. The Xenopus protein kinase pEg2 associates with the centrosome in a cell cycle-dependent manner, binds to the spindle microtubules and is involved in bipolar mitotic spindle assembly. J. Cell Sci.111, 557–572 (1998). CASPubMed Google Scholar
Giet, R. & Prigent, C. The Xenopus laevis aurora/Ipl1p-related kinase pEg2 participates in the stability of the bipolar mitotic spindle. Exp. Cell Res.258, 145–151 (2000). ArticleCASPubMed Google Scholar
Walter, A.O., Seghezzi, W., Korver, W., Sheung, J. & Lees, E. The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation. Oncogene19, 4906–4916 (2000). ArticleCASPubMed Google Scholar
Geit, R. et al. Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J. Cell Biol.156, 437–451 (2002). Article Google Scholar
Katayama, H., Zhou, H., Li, Q., Tatsuka, M. & Sen, S. Interaction and feedback regulation between STK15/BTAK/Aurora-A kinase and protein phosphatase 1 through mitotic cell division cycle. J. Biol. Chem.276, 46219–46224 (2001). ArticleCASPubMed Google Scholar
Francisco, L., Wang, W. & Chan, C.S. Type 1 protein phosphatases acts in opposition to IpL1 protein kinase in regulating yeast chromosome segregation. Mol. Cell. Biol.14, 4731–4740 (1994). ArticleCASPubMedPubMed Central Google Scholar
Andresson, T. & Ruderman, J.V. The kinase Eg2 is a component of the Xenopus oocyte pregesterone-activated signaling pathway. EMBO J.17, 5627–5637 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hsu, J. et al. Mitotic phosphorylation of histone H3 is gorverned by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and Nematodes. Cell102, 279–291 (2000). ArticleCASPubMed Google Scholar
Biggins, S. et al. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev.13, 532–544 (1999). ArticleCASPubMedPubMed Central Google Scholar
Wilde, A. & Zheng, Y. Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science284, 1359–1362 (1999). ArticleCASPubMed Google Scholar
Ohba, T., Nakamura, M., Nishitani, H. & Nishimoto, T. Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science284, 1356–1358 (1999). ArticleCASPubMed Google Scholar
Kalab, P., Pu, R.T. & Dasso, M. The ran GTPase regulates mitotic spindle assembly. Curr Biol9, 481–484 (1999). ArticleCASPubMed Google Scholar
Carazo-Salas, R.E. et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature400, 178–181 (1999). ArticleCASPubMed Google Scholar
Guarguaglini, G. et al. Regulated Ran-binding protein 1 activity is required for organization and function of the mitotic spindle in mammalian cells in vivo. Cell Growth Differ.11, 455–465 (2000). CASPubMed Google Scholar
Moore, W.J., Zhang, C. & Clarke, P.R. Targeting of RCC1 to chromosomes is required for proper mitotic spindle assembly in human cells. Curr. Biol.12, 1442–1447 (2002). ArticleCASPubMed Google Scholar
Wilde, A. et al. Ran stimulates spindle assembly by changing microtubule dynamics and the balance of motor activities. Nature Cell Biol.3, 221–227 (2001). ArticleCASPubMed Google Scholar
Carazo-Salas, R.E., Gruss, O.J., Mattaj, I.W. & Karsenti, E. RanGTP coordinates the regulation of microtubule nucleation and dynamics during mitotic spindle assembly. Nature Cell Biol.3, 228–234 (2001). ArticleCASPubMed Google Scholar
Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, A novel Xenopus MAP involved in spindle pole organization. J. Cell Biol.149, 1405–1418 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wittmann, T., Boleti, H., Antony, C., Karsenti, E. & Vernos, I. Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J. Cell Biol.143, 673–685 (1998). ArticleCASPubMedPubMed Central Google Scholar
Merdes, A., Heald, R., Samejima, K., Earnshaw, W. & Cleveland, D. Formation of spindle poles by dynein/dynactin-dependent transport of NuMA. J. Cell Biol.149, 851–862 (2000). ArticleCASPubMedPubMed Central Google Scholar
Merdes, A., Ramyar, K., Vechio, J. & Cleveland, D. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell87, 447–458 (1996). ArticleCASPubMed Google Scholar
Gaglio, T., Saredi, A. & Compton, D. NuMA is required for the organization of microtubules into aster-like mitotic arrays. J. Cell Biol.131, 693–708 (1995). ArticleCASPubMed Google Scholar
Gruss, O.J. et al. Ran induces spindle assembly by reversing the inhibitory effect of importin α on TPX2 activity. Cell104, 83–92 (2001). ArticleCASPubMed Google Scholar
Wiese, C. et al. Role of Importin-β in coupling Ran to downstream targets in microtubule assembly. Science291, 653–656 (2001). ArticleCASPubMed Google Scholar
Nachury, V.M. et al. Importin β is a mitotic target of the small GTPase Ran in spindle assembly. Cell104, 95–106 (2001). ArticleCASPubMed Google Scholar
Kufer, T.A. et al. Human TPX2 is required for targeting Aurora-A kinase to the spindle. J. Cell Biol.158, 625–637 (2002). Article Google Scholar
Giet, R., Uzbekov, N., cubizolles, F., Le Guellec, K. & Prigent, C. The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein XlEg5. J. Biol. Chem.274, 15005–15013 (1999). ArticleCASPubMed Google Scholar
Gruss, O.J. et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nature Cell Biol.4, 871–879 (2002). ArticleCASPubMed Google Scholar
Zhou, H. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genet.20, 183–193 (1998). Article Google Scholar
Sen, S., Zhou, H. & White, R.A. A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene14, 2195–2200 (1997). ArticleCASPubMed Google Scholar
Bischoff, J. & Plowman, G.D. The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol.9, 454–459 (1999). ArticleCASPubMed Google Scholar