A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly (original) (raw)

References

  1. Nigg, E. Mitotic kinases as regulators of cell division and its checkpoints. Nature Rev. Mol. Cell Biol. 2, 21–31 (2001).
    Article CAS Google Scholar
  2. Andersen, S. Balanced regulation of microtubule dynamics during the cell cycle: a contemporary view. BioEssay 21, 53–60 (1999).
    Article CAS Google Scholar
  3. Giet, R. & Prigent, C. Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases. J. Cell Sci. 112, 3591–3601 (1999).
    CAS PubMed Google Scholar
  4. Glover, D., Leibowitz, M.H., McLean, D.A. & Parry, H. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81, 95–105 (1995).
    Article CAS PubMed Google Scholar
  5. Schumacher, J.M., Ashcroft, N., Donovan, P.J. & Golden, A. A highly conserved centrosomal kinase, AIR-1, is required for accurate cell cycle progression and segregation of developmental factors in Caenorhabditis elegans embryos. Development 125, 4391–4402 (1998).
    CAS PubMed Google Scholar
  6. Hannak, E., Kirkham, M., Hyman, A.A. & Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol. 155, 1109–1116 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  7. Roghi, C.R. et al. The Xenopus protein kinase pEg2 associates with the centrosome in a cell cycle-dependent manner, binds to the spindle microtubules and is involved in bipolar mitotic spindle assembly. J. Cell Sci. 111, 557–572 (1998).
    CAS PubMed Google Scholar
  8. Giet, R. & Prigent, C. The Xenopus laevis aurora/Ipl1p-related kinase pEg2 participates in the stability of the bipolar mitotic spindle. Exp. Cell Res. 258, 145–151 (2000).
    Article CAS PubMed Google Scholar
  9. Walter, A.O., Seghezzi, W., Korver, W., Sheung, J. & Lees, E. The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation. Oncogene 19, 4906–4916 (2000).
    Article CAS PubMed Google Scholar
  10. Geit, R. et al. Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J. Cell Biol. 156, 437–451 (2002).
    Article Google Scholar
  11. Katayama, H., Zhou, H., Li, Q., Tatsuka, M. & Sen, S. Interaction and feedback regulation between STK15/BTAK/Aurora-A kinase and protein phosphatase 1 through mitotic cell division cycle. J. Biol. Chem. 276, 46219–46224 (2001).
    Article CAS PubMed Google Scholar
  12. Francisco, L., Wang, W. & Chan, C.S. Type 1 protein phosphatases acts in opposition to IpL1 protein kinase in regulating yeast chromosome segregation. Mol. Cell. Biol. 14, 4731–4740 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  13. Andresson, T. & Ruderman, J.V. The kinase Eg2 is a component of the Xenopus oocyte pregesterone-activated signaling pathway. EMBO J. 17, 5627–5637 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  14. Sassoon, I. et al. Regulation of Saccharomyces cerevisiae kinetochore by the type 1 phosphatase Glc7p. Genes Dev. 13, 545–555 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  15. Hsu, J. et al. Mitotic phosphorylation of histone H3 is gorverned by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and Nematodes. Cell 102, 279–291 (2000).
    Article CAS PubMed Google Scholar
  16. Biggins, S. et al. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev. 13, 532–544 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  17. Wilde, A. & Zheng, Y. Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284, 1359–1362 (1999).
    Article CAS PubMed Google Scholar
  18. Ohba, T., Nakamura, M., Nishitani, H. & Nishimoto, T. Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284, 1356–1358 (1999).
    Article CAS PubMed Google Scholar
  19. Kalab, P., Pu, R.T. & Dasso, M. The ran GTPase regulates mitotic spindle assembly. Curr Biol 9, 481–484 (1999).
    Article CAS PubMed Google Scholar
  20. Carazo-Salas, R.E. et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400, 178–181 (1999).
    Article CAS PubMed Google Scholar
  21. Guarguaglini, G. et al. Regulated Ran-binding protein 1 activity is required for organization and function of the mitotic spindle in mammalian cells in vivo. Cell Growth Differ. 11, 455–465 (2000).
    CAS PubMed Google Scholar
  22. Moore, W.J., Zhang, C. & Clarke, P.R. Targeting of RCC1 to chromosomes is required for proper mitotic spindle assembly in human cells. Curr. Biol. 12, 1442–1447 (2002).
    Article CAS PubMed Google Scholar
  23. Wilde, A. et al. Ran stimulates spindle assembly by changing microtubule dynamics and the balance of motor activities. Nature Cell Biol. 3, 221–227 (2001).
    Article CAS PubMed Google Scholar
  24. Carazo-Salas, R.E., Gruss, O.J., Mattaj, I.W. & Karsenti, E. RanGTP coordinates the regulation of microtubule nucleation and dynamics during mitotic spindle assembly. Nature Cell Biol. 3, 228–234 (2001).
    Article CAS PubMed Google Scholar
  25. Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, A novel Xenopus MAP involved in spindle pole organization. J. Cell Biol. 149, 1405–1418 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  26. Wittmann, T., Boleti, H., Antony, C., Karsenti, E. & Vernos, I. Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J. Cell Biol. 143, 673–685 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  27. Merdes, A., Heald, R., Samejima, K., Earnshaw, W. & Cleveland, D. Formation of spindle poles by dynein/dynactin-dependent transport of NuMA. J. Cell Biol. 149, 851–862 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  28. Merdes, A., Ramyar, K., Vechio, J. & Cleveland, D. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87, 447–458 (1996).
    Article CAS PubMed Google Scholar
  29. Gaglio, T., Saredi, A. & Compton, D. NuMA is required for the organization of microtubules into aster-like mitotic arrays. J. Cell Biol. 131, 693–708 (1995).
    Article CAS PubMed Google Scholar
  30. Gruss, O.J. et al. Ran induces spindle assembly by reversing the inhibitory effect of importin α on TPX2 activity. Cell 104, 83–92 (2001).
    Article CAS PubMed Google Scholar
  31. Wiese, C. et al. Role of Importin-β in coupling Ran to downstream targets in microtubule assembly. Science 291, 653–656 (2001).
    Article CAS PubMed Google Scholar
  32. Nachury, V.M. et al. Importin β is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104, 95–106 (2001).
    Article CAS PubMed Google Scholar
  33. Murray, A.W. Cell cycle extracts. Methods Cell Biol. 36, 581–605 (1991).
    Article CAS PubMed Google Scholar
  34. Kufer, T.A. et al. Human TPX2 is required for targeting Aurora-A kinase to the spindle. J. Cell Biol. 158, 625–637 (2002).
    Article Google Scholar
  35. Giet, R., Uzbekov, N., cubizolles, F., Le Guellec, K. & Prigent, C. The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein XlEg5. J. Biol. Chem. 274, 15005–15013 (1999).
    Article CAS PubMed Google Scholar
  36. Gruss, O.J. et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nature Cell Biol. 4, 871–879 (2002).
    Article CAS PubMed Google Scholar
  37. Zhou, H. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genet. 20, 183–193 (1998).
    Article Google Scholar
  38. Sen, S., Zhou, H. & White, R.A. A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene 14, 2195–2200 (1997).
    Article CAS PubMed Google Scholar
  39. Bischoff, J. & Plowman, G.D. The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol. 9, 454–459 (1999).
    Article CAS PubMed Google Scholar

Download references