Cytokines suppress adipogenesis and PPAR-γ function through the TAK1/TAB1/NIK cascade (original) (raw)
References
Gimble, J.M. et al. Bone morphogenetic proteins inhibit adipocyte differentiation by bone marrow stromal cells. J. Cell. Biochem.58, 393–402 (1995). ArticleCASPubMed Google Scholar
Ducy, P., Schinke, T. & Karsenty, G. The osteoblast: a sophisticated fibroblast under central surveillance. Science289, 1501–1504 (2000). ArticleCASPubMed Google Scholar
Ron, D., Brasier, A.R., McGehee, R.J. & Habener, J.F. Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP). J. Clin. Invest.89, 223–233 (1992). ArticleCASPubMedPubMed Central Google Scholar
Torti, F.M., Torti, S.V., Larrick, J.W. & Ringold, G.M. Modulation of adipocyte differentiation by tumor necrosis factor and transforming growth factor β. J. Cell. Biol.108, 1105–1113 (1989). ArticleCASPubMed Google Scholar
Kubota, N. et al. PPARγ mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol. Cell4, 597–609 (1999). ArticleCASPubMed Google Scholar
Takaesu, G. et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol. Cell5, 649–658 (2000). ArticleCASPubMed Google Scholar
Ninomiya-Tsuji, J. et al. The kinase TAK1 can activate the NIK–IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature398, 252–256 (1999). ArticleCASPubMed Google Scholar
Shirakabe, K. et al. TAK1 mediates the ceramide signalling to stress-activated protein kinase/c-Jun N-terminal kinase. J. Biol. Chem.272, 8141–8144 (1997). ArticleCASPubMed Google Scholar
Shibuya, H. et al. TAB1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science272, 1179–1182 (1996). ArticleCASPubMed Google Scholar
Hu, E., Kim, J.B., Sarraf, P. & Spiegelman, B.M. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARγ. Science274, 2100–2103 (1996). ArticleCASPubMed Google Scholar
Yamaguchi, A., Komori, T., Suda, Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr. Rev.21, 393–411 (2000). ArticleCASPubMed Google Scholar
Peschon, J.J. et al. TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation. J. Immunol.160, 943–952 (1998). CASPubMed Google Scholar
Kodera, Y. et al. Ligand type-specific interactions of peroxisome proliferator-activated receptor γ with transcriptional coactivators. J. Biol. Chem.275, 33201–33204 (2000). ArticleCASPubMed Google Scholar
Yanagisawa, J. et al. Convergence of transforming growth factor-β and vitamin D signalling pathways on SMAD transcriptional coactivators. Science283, 1317–1321 (1999). ArticleCASPubMed Google Scholar
Woronicz, J.D., Gao, X., Cao, Z., Rothe, M. & Goeddel, D.V. IkB kinase-b: NF-kB activation and complex formation with IkB kinase-a and NIK. Science278, 866–869 (1997). ArticleCASPubMed Google Scholar
Kato, S. et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science270, 1491–1494 (1995). ArticleCASPubMed Google Scholar
Chen, F.E., Huang, D.B., Chen Y.O. & Ghosh, G. Crystal structure of p50/p65 heterodimer of transcription factor NF-kB bound to DNA. Nature391, 410–413 (1998). ArticleCASPubMed Google Scholar
Castillo, G. et al. An adipogenic cofactor bound by the differentiation domain of PPARg. EMBO J.13, 3676–3687 (1999). Article Google Scholar
Baumann, C.A., Chokshi, N., Saltiel, A.R. & Ribon, V. Cloning and characterization of a functional peroxisome proliferator activator receptor-gamma-responsive element in the promoter of the CAP gene. J. Biol. Chem.275, 9131–9135 (2000). ArticleCASPubMed Google Scholar
Chen, H., Lin, R.J., Xie, W., Wilpitz, D. & Evans, R.M. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell98, 675–86 (1999). ArticleCASPubMed Google Scholar
Zhu, Y. et al. Structural organization of mouse peroxisome proliferator-activated receptor g (mPPARg) gene: alternative promoter use and different splicing yield two mPPAR g isoforms. Proc. Natl Acad. Sci. USA17, 7921–7925 (1995). Article Google Scholar
Kersten, S., Desvergne, B. & Wahli, W. Roles of PPARs in health and disease. Nature405, 421–424 (2000). ArticleCASPubMed Google Scholar
Wajant, H., Henkler, F. & Scheurich, P. The TNF-receptor-associated factor family: scaffold molecules for cytokine receptors, kinases and their regulators. Cell Signal13, 389–400 (2001). ArticleCASPubMed Google Scholar
Mbalaviele, G. et al. Activation of peroxisome proliferator-activated receptor-g pathway inhibits osteoclast differentiation. J. Biol. Chem.275, 14388–14393 (2000). ArticleCASPubMed Google Scholar
Ricote, M., Li, A.C., Willson, T.M., Kelly, C.J. & Glass, C.K. The peroxisome proliferator-activated receptor-g is a negative regulator of macrophage activation. Nature391, 79–82 (1998). ArticleCASPubMed Google Scholar
Rossi, A. et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature403, 103–108 (2000). ArticleCASPubMed Google Scholar
Jepsen, K. et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell102, 753–763 (2000). ArticleCASPubMed Google Scholar
Glass, C.K. & Rosenfeld, M.G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev.14, 121–141 (2000). CASPubMed Google Scholar
Yu, J.Y., DeRuiter, S.L. & Turner, D.L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl Acad. Sci. USA99, 6047–6052 (2002). ArticleCASPubMedPubMed Central Google Scholar