- Kumar, C. et al. Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J. 30, 2044–2056 (2011).
Article CAS Google Scholar
- Grant, C.M., MacIver, F.H. & Dawes, I.W. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr. Genet. 29, 511–515 (1996).
Article CAS Google Scholar
- Dalle-Donne, I., Rossi, R., Colombo, G., Giustarini, D. & Milzani, A. Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem. Sci. 34, 85–96 (2009).
Article CAS Google Scholar
- Mieyal, J.J., Gallogly, M.M., Qanungo, S., Sabens, E.A. & Shelton, M.D. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid. Redox Signal. 10, 1941–1988 (2008).
Article CAS Google Scholar
- Muller, E.G. A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth. Mol. Biol. Cell 7, 1805–1813 (1996).
Article CAS Google Scholar
- Østergaard, H., Tachibana, C. & Winther, J.R. Monitoring disulfide bond formation in the eukaryotic cytosol. J. Cell Biol. 166, 337–345 (2004).
Article Google Scholar
- Dooley, C.T. et al. Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J. Biol. Chem. 279, 22284–22293 (2004).
Article CAS Google Scholar
- Gutscher, M. et al. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 5, 553–559 (2008).
Article CAS Google Scholar
- Morgan, B., Sobotta, M.C. & Dick, T.P. Measuring _E_GSH and H2O2 with roGFP2-based redox probes. Free Radic. Biol. Med. 51, 1943–1951 (2011).
Article CAS Google Scholar
- Braun, N.A., Morgan, B., Dick, T.P. & Schwappach, B. The yeast CLC protein counteracts vesicular acidification during iron starvation. J. Cell Sci. 123, 2342–2350 (2010).
Article CAS Google Scholar
- Meyer, A.J. & Dick, T.P. Fluorescent protein–based redox probes. Antioxid. Redox Signal. 13, 621–650 (2010).
Article CAS Google Scholar
- Albrecht, S.C., Barata, A.G., Grosshans, J., Teleman, A.A. & Dick, T.P. In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab. 14, 819–829 (2011).
Article CAS Google Scholar
- Dardalhon, M. et al. Redox-sensitive YFP sensors monitor dynamic nuclear and cytosolic glutathione redox changes. Free Radic. Biol. Med. 52, 2254–2265 (2012).
Article CAS Google Scholar
- Rebrin, I., Bayne, A.C., Mockett, R.J., Orr, W.C. & Sohal, R.S. Free aminothiols, glutathione redox state and protein mixed disulphides in aging Drosophila melanogaster. Biochem. J. 382, 131–136 (2004).
Article CAS Google Scholar
- Jones, D.P. & Liang, Y. Measuring the poise of thiol/disulfide couples in vivo. Free Radic. Biol. Med. 47, 1329–1338 (2009).
Article CAS Google Scholar
- Jones, D.P. Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol. 295, C849–C868 (2008).
Article CAS Google Scholar
- Schafer, F.Q. & Buettner, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30, 1191–1212 (2001).
Article CAS Google Scholar
- Aw, T.Y. Cellular redox: a modulator of intestinal epithelial cell proliferation. News Physiol. Sci. 18, 201–204 (2003).
CAS PubMed Google Scholar
- López-Mirabal, H.R., Thorsen, M., Kielland-Brandt, M.C., Toledano, M.B. & Winther, J.R. Cytoplasmic glutathione redox status determines survival upon exposure to the thiol-oxidant 4,4′-dipyridyl disulfide. FEMS Yeast Res. 7, 391–403 (2007).
Article Google Scholar
- López-Mirabal, H.R. & Winther, J.R. Redox characteristics of the eukaryotic cytosol. Biochim. Biophys. Acta 1783, 629–640 (2008).
Article Google Scholar
- Hirrlinger, J. et al. The multidrug resistance protein MRP1 mediates the release of glutathione disulfide from rat astrocytes during oxidative stress. J. Neurochem. 76, 627–636 (2001).
Article CAS Google Scholar
- Brechbuhl, H.M. et al. Glutathione transport is a unique function of the ATP-binding cassette protein ABCG2. J. Biol. Chem. 285, 16582–16587 (2010).
Article CAS Google Scholar
- Lohman, J.R. & Remington, S.J. Development of a family of redox-sensitive green fluorescent protein indicators for use in relatively oxidizing subcellular environments. Biochemistry 47, 8678–8688 (2008).
Article CAS Google Scholar
- Paumi, C.M., Chuk, M., Snider, J., Stagljar, I. & Michaelis, S. ABC transporters in Saccharomyces cerevisiae and their interactors: new technology advances the biology of the ABCC (MRP) subfamily. Microbiol. Mol. Biol. Rev. 73, 577–593 (2009).
Article CAS Google Scholar
- Paumi, C.M., Pickin, K.A., Jarrar, R., Herren, C.K. & Cowley, S.T. Ycf1p attenuates basal level oxidative stress response in Saccharomyces cerevisiae. FEBS Lett. 586, 847–853 (2012).
Article CAS Google Scholar
- Lee, M.E. et al. The Rho1 GTPase acts together with a vacuolar glutathione S-conjugate transporter to protect yeast cells from oxidative stress. Genetics 188, 859–870 (2011).
Article CAS Google Scholar
- Lazard, M. et al. Selenodiglutathione uptake by the Saccharomyces cerevisiae vacuolar ATP-binding cassette transporter Ycf1p. FEBS J. 278, 4112–4121 (2011).
Article CAS Google Scholar
- Tan, S.X. et al. The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae. J. Biol. Chem. 285, 6118–6126 (2010).
Article CAS Google Scholar
- Marty, L. et al. The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc. Natl. Acad. Sci. USA 106, 9109–9114 (2009).
Article CAS Google Scholar
- Kanzok, S.M. et al. Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science 291, 643–646 (2001).
Article CAS Google Scholar
- Bonilla, M., Denicola, A., Marino, S.M., Gladyshev, V.N. & Salinas, G. Linked thioredoxin-glutathione systems in platyhelminth parasites: alternative pathways for glutathione reduction and deglutathionylation. J. Biol. Chem. 286, 4959–4967 (2011).
Article CAS Google Scholar
- Porras, P. et al. Glutaredoxins catalyze the reduction of glutathione by dihydrolipoamide with high efficiency. Biochem. Biophys. Res. Commun. 295, 1046–1051 (2002).
Article CAS Google Scholar
- Johansson, C., Lillig, C.H. & Holmgren, A. Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase. J. Biol. Chem. 279, 7537–7543 (2004).
Article CAS Google Scholar
- Minich, T. et al. The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J. Neurochem. 97, 373–384 (2006).
Article CAS Google Scholar
- Dringen, R. Metabolism and functions of glutathione in brain. Prog. Neurobiol. 62, 649–671 (2000).
Article CAS Google Scholar
- Knollema, S., Hom, H.W., Schirmer, H., Korf, J. & Ter Horst, G.J. Immunolocalization of glutathione reductase in the murine brain. J. Comp. Neurol. 373, 157–172 (1996).
Article CAS Google Scholar
- Bao, R., Zhang, Y., Lou, X., Zhou, C.Z. & Chen, Y. Structural and kinetic analysis of Saccharomyces cerevisiae thioredoxin Trx1: implications for the catalytic mechanism of GSSG reduced by the thioredoxin system. Biochim. Biophys. Acta 1794, 1218–1223 (2009).
Article CAS Google Scholar
- Bulger, J.E. & Brandt, K.G. Yeast glutathione reductase. I. Spectrophotometric and kinetic studies of its interaction with reduced nicotinamide adenine dinucleotide. J. Biol. Chem. 246, 5570–5577 (1971).
CAS PubMed Google Scholar
- Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).
Article CAS Google Scholar
- Rahman, I., Kode, A. & Biswas, S.K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 1, 3159–3165 (2006).
Article CAS Google Scholar
- Meyer, A.J. et al. Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J. 52, 973–986 (2007).
Article CAS Google Scholar
- Mumberg, D., Muller, R. & Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–122 (1995).
Article CAS Google Scholar